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To enhance the clinical utility of mass spectrometry (MS), lengthy dwell times on less informative 
regions of patient specimens (e.g., adipose tissue in breast) must be minimized. Additionally, a 
promising variant of MS known as picosecond infrared laser MS (PIRL-MS) faces further challenges, 
namely, lipid contamination when probing adipose tissue. Here we demonstrate on several thick non-
sectioned resected human breast specimens (healthy and malignant) that reflection-mode polarimetric 
imaging can robustly guide PIRL-MS toward regions devoid of significant fat content to (1) avoid signal 
contamination and (2) shorten overall MS analysis times. Through polarimetric targeting of non-fat 
regions, PIRL-MS sampling revealed feature-rich spectral signatures including several known breast 
cancer markers. Polarimetric guidance mapping was enabled by circular degree-of-polarization (DOP) 
imaging via both Stokes and Mueller matrix polarimetry. These results suggest a potential synergistic 
hybrid approach employing polarimetry as a wide-field-imaging guidance tool to optimize efficient 
probing of tissue molecular content using MS.

Keywords  Polarimetry, Laser mass spectrometry, Breast cancer, Image guidance, Degree of polarization, 
Segmentation

Picosecond infrared laser mass spectrometry (PIRL-MS) profiles tissue molecular composition via mass-to-
charge measurements of extracted water-soluble analytes (e.g., molecules in water-rich biological tissues). 
Advantageously, PIRL-MS can be performed under ambient conditions on specimens of various thicknesses and 
surface topologies without the need to prepare tissue homogenates or analyte extracts1–4. Notable demonstrations 
include classification of various unprocessed human brain and skin cancer specimens1–4. Successful clinical 
implementation of PIRL-MS (and potentially other ambient MS technologies) may enable rapid tumour margin 
delineation5,6, intraoperative cancer diagnostics7, and on-site biopsy adequacy assessment8.

A previous study has demonstrated the feasibility of PIRL-MS analysis of non-sectioned malignant breast 
tissue (in situ) using subcutaneous murine models9 to recover biomarker molecules unique to breast cancer 
similar to those reported in other MS studies10. Actual human breast tissue, on the other hand, presents a 
major challenge for PIRL-MS due to the often-significant presence of adipose tissue (i.e., fat) which absorbs 
the mid infrared laser light without efficient conversion of the thermal energy to ablation mode, resulting in an 
undesirable solid-to-liquid phase transition (melting) of the fat. This yields a thin lipid layer on the surrounding 
areas, jeopardizing the integrity of their PIRL-MS signal by contamination. Furthermore, lengthy data acquisition 
times exploring non-informative regions of a specimen (e.g., adipose tissue and other areas of ‘low-cellularity’) 
also limit the clinical appeal of on-site MS analysis (and any other point-sensing analytical sampling methods). 
Therefore, to optimize PIRL-MS for breast cancer diagnostic applications, (1) adipose regions must be avoided, 
and (2) analysis times must be shortened by guiding PIRL-MS probe to areas of high cellularity.

These objectives are achievable through the deployment of a guidance tool to avoid and target specific 
regions for MS probing. Polarimetry – an optical technique based on measured changes to polarized light 
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after interacting with a sample11,12 – has shown promise as a guidance tool for oncological MS analysis in the 
past6,13,14. Indeed, polarimetry is emerging as a useful label-free cancer imaging approach through its sensitivity 
to cancer-associated structural changes to tissue (e.g., collagen remodelling and cellular proliferation), either as 
a stand-alone approach or in combination with other modalities11,12,15. Specifically to the latter, polarimetry and 
MS form a synergistic hybrid by complementing each other’s limitations: polarimetry is fast and wide-field, but 
not yet accurate enough to yield definitive diagnostics, whereas MS analysis may be slow, largely point-sensing 
(hence not wide-field) but is highly sensitive / specific to cancer-induced changes in tissue biochemistry and thus 
to molecular cancer signatures.

Our previous studies on polarimetric guidance of MS6,13,14 were demonstrated on thin tissue slices from 
humanized breast cancer mouse models to reveal tumourous regions for rapid MS analysis. Though interesting, 
those were proof-of-principle studies performed on ideal (clinically unrealistic) flat sectioned (< 50 μm thick) 
animal model tissues, benefitting from minimal depolarization noise, easy measurement geometry, and 
no variability in optical incidence angles. Importantly, clinical specimens are seldom flat nor thinner than 
50 μm, and human breast tissue (as opposed to murine models) differs in adipose composition, thus the latter 
demonstrations remain distant from biomedical applicability. Due to the challenges associated with bulk tissue, 
polarimetric imaging of unprocessed bulk breast has seldom been performed; to the best of our knowledge in 
two studies16,17 and only one of which yielded spatial information16.

In this study, we take crucially important steps toward clinical feasibility through demonstration of 
polarimetric guidance of PIRL-MS on realistic, thick, non-sectioned (uneven) human breast tumour tissue in 
reflection-mode geometry. It is shown that circular degree of polarization (DOP) imaging – we posit via helicity 
flipping/preservation mechanisms – highlights adipose tissue regions (for PIRL-MS avoidance to minimize 
contamination). Additional polarimetric biomarkers beyond circular DOP are also explored. We note that 
this polarimetric imaging technique can directly optimize MS tissue sampling methods (and other sampling 
modalities), and may also inform on breast density which is an important breast cancer screening biomarker 
directly related to adipose composition18.

Materials and methods
Tissue specimens and histology
6 human breast specimens (2 healthy normals, 4 infiltrating ductal carcinomas) from surgical resections 
(3–4  mm thick) were obtained from the Princess Margaret Cancer Biobank (Toronto) under institutional 
authorization (UHN REB 18-5228). The specimens were frozen on dry ice and stored in − 80° C. The specimens 
were bisected while frozen to create two samples with matching surfaces. One was thawed at room temperature 
for ~ 10 min then polarimetrically imaged en face, and the other was kept frozen at − 80° C until subsequent 
polarimetrically-guided PIRL-MS probing was performed (on the matching surface side, ~ 30  s thaw). After 
thawing, the specimens were no longer flat, taking on clinically realistic topologies as seen in the image of 
specimen 1 in the side-view panel of Fig. 2.

Histological analysis was performed on the polarimetrically-imaged halves of each specimen utilizing a 
4.5 μm slice taken from near the imaged surface (~ 10–20 μm below it to ensure a flat histology slice). We used 
two different stains: oil red O (ORO) for visualization of fat and cell nuclei; when ORO use was not successful 
in normal healthy tissues (stain pooling due to large fat aggregation), we used conventional hematoxylin and 
eosin (H&E) staining for visualization of cellular regions and normal non-adipose content. The H&E protocol 
prevented direct visualization of fat due to it being dissolved during the wash steps, but yielded lipid ‘footprint’ 
regions of empty spaces to identify its location (as is well known to those skilled in the art19). Thus, a combination 
of ORO and H&E staining yielded adequate identification of histopathologic regions of interest to contextualize 
the polarimetric and mass spectrometric analysis results.

Segmentation mask processing
The fat/non-fat segmentation masks (used to generate the histograms in Fig.  4, column   v) were produced 
according to the workflow in Fig. 1 (examples shown for Healthy Specimen 2 and Cancer Specimen 1). The 
histology images were first annotated to contour the fatty regions (orange outline) and non-fat regions (purple 
outline) in consultation with a pathology expert (Fig. 1A). Only the most ‘homogenous’ regions were selected; 
‘complex’ regions with intermixed fat and non-fat were disregarded. In order to achieve maximal co-registration 
between histology and polarimetry, the contoured histology images were superimposed onto the CC-DOP 
polarimetry images which enabled visualization of the tissue boundaries and their use as fiducial markers for 
alignment (Fig. 1B). Finally, a segmentation mask was produced by colour-filling the histology-based contours 
(orange = fat, purple = non-fat); the non-annotated regions (e.g., intermixed fat and non-fat) were marked as 
‘undefined’ (grey) (Fig. 1C). These segmentation masks were then used as the ‘ground truth’ for fat and non-fat 
locations to quantify fat/non-fat classification performance of circular and linear DOP images.

Stokes and mueller matrix polarimetry calculus
Polarized light can be represented mathematically using Stokes vectors. A Mueller matrix (M) describes the 
polarimetric properties of an interacting material (e.g., tissue specimen), which relates incident ( Sin) and 
scattered ( Sout) Stokes vectors according to
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IH, IV, I+45, I−45, IR, and IL are the light intensities of linearly polarized light at horizontal, vertical, +45°, and 
−45° orientations, and right-circular and left-circular polarizations. I is the total intensity of the light, typically 
measured by summing any two mutually orthogonal polarization states. Mxx are the sixteen Mueller matrix 
elements.

Circular degree of polarization
The Stokes circular DOP describing the light beam ranges from −1 to +1 and was calculated as

	
DOCPStokes =

S3,in

|S3,in|
· S3,out

S0,out
=

{IR − IL}in
|{IR − IL}in|

· {IR − IL}out
{IR + IL}out

� (2)
 

where S3,out/S0,out is the standard calculation of circular DOP; however we multiply it by the term, S3,in/ |S3,in|
, to assign a negative value in the case of helicity-flipping or a positive value in the case of helicity-preservation. 
Helicity-flipping occurs when S3,out has an opposite sign to S3,in, indicating that the handedness of the scattered 
polarization state is opposite to the incident polarization state (i.e., more left-circular polarization intensity in 
the scattered state when the incident state was right-circular), whereas helicity-preservation occurs when S3,out 
has the same sign as S3,in.

The Mueller DOP (DOCPMueller) is simply taken as the M44 element since it is closely related to circular 
polarization preservation20–22. This simplifies the analysis by avoiding the more complicated albeit more 
comprehensive calculation of ∆ (depolarization power) using Lu-Chipman polar decomposition23. When 
performing backscattering measurements, M44 becomes negative in the ‘helicity-flipping’ case24. Note that 
we use the term “degree of polarization” for the Mueller measurements to describe the sample’s polarization 
maintaining power (i.e., 1 minus depolarization power).

Since both of these DOPs showed good contrast between fat and surrounding tissues, we derived a ‘composite’ 
circular DOP (CC-DOP), calculated as the average of the two:

	 CC-DOP = (DOCPStokes + DOCPMueller)/2� (3) 

Linear degree of polarization
Stokes linear DOP is conventionally calculated as DOLPStokes =

√ (
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circular helicity preserving/flipping mechanisms described above, we calculate it such that it also ranges from 
−1 to +1:
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Fig. 1.  Generation of the fat/non-fat segmentation mask for Healthy Specimen 2 and Cancer Specimen 1. 
(a) The histology image was manually annotated to contour the fat (orange) and non-fat (purple). (b) The 
contoured histology images were then superimposed onto the CC-DOP polarimetry image which visualize 
the tissue boundaries and enable their use as fiducial markers to achieve maximal co-registration. (c) The 
segmentation mask was produced by colour-filling the annotation outlines; the non-annotated regions 
(intermixed fat and non-fat) were marked as ‘undefined’ (grey).
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where (−S1,in/ |S1,in|) · (S1,out/S0,out) and (S2,in/ |S2,in|) · (S2,out/S0,out) become negative when there is higher 
co-linear polarization intensity than cross-linear polarization intensity in the scattered light (for example, when 
{IV}out is greater than {IH}out with incident linear vertically polarized light). This enables fair comparison 
between Stokes linear and circular DOP since both will now take on negative values upon direct backscatter 
events such as specular reflection and remain positive otherwise.

Mueller linear DOP is simply calculated as DOLPMueller = −1 · M22 + M33 since these elements are 
strongly correlated to the linear polarization preservation20–22 (again, simplifying the analysis by avoiding 
polar decomposition). The negative sign is applied to the M22 element such that it becomes negative for direct 
backscatter / mirror-like reflections, akin to M33

24–26, thus enabling DOLPMueller to vary across the same dynamic 
range of −1 to +1 as DOCPMueller for fair comparison.

Analogously to Eq.  (3), the composite linear DOP (LL-DOP) was calculated as the average between the 
Stokes and Mueller linear DOPs:

	 LL-DOP = (DOLPStokes + DOLPMueller)/2� (5) 

Retardance, linear diattenuation, and circular diattenuation
Retardance and linear and circular diattenuation were calculated using Lu-Chipman polar decomposition of the 
Mueller matrix as laid out in Ref23.

Experimental polarimetric imaging system
The polarimetric imaging system employed a helium-neon laser source (λ = 632.8 nm) and intensified-CCD 
(ICCD) camera detector (PI-MAX® 3, Princeton Instruments), configured into a 180° backscatter geometry 
detection scheme as shown in Fig. 2. Before tissue incidence, the light was (1) directed through a polarization 
state generator (PSG) consisting of a linear polarizer followed by a quarter wave retarder, then (2) reflected 
from a dielectric mirror oriented at 45° to steer the light towards the specimen for top-down illumination, and 
finally (3) passed through a glass beam splitter (BS) oriented at 45° (which transmitted ~ 90% of the light). The 
backscattered light from the specimen was reflected from the beam splitter and passed through a polarization 
state analyzer (PSA), consisting of a quarter wave retarder followed by a linear polarizer, then focused onto the 
camera via a lens to form an image.

The Stokes-Mueller equation to relate the incident Stokes vector ( Sincident) to the detected Stokes vector 
( Sdetected) in the polarimetric imaging system is:

	 Sdetected = MPSAMBS,refMsampleMBS,transMmirrorMPSGSincident� (6)

MPSA and MPSG are the conventional Mueller matrices for the PSA and PSG depending on their configurations. 
MBS,trans, MBS,ref, and Mmirror are the Mueller matrices for transmission through the BS, 45° reflection from 
the BS, and 45° reflection from the mirror, respectively. Mmirror and MBS,ref were measured to be roughly 
the same as the 90°-reflection Mueller matrix from a dielectric surface (this does not follow the theoretical 

Fig. 2.  Schematic of the 180°-reflection-mode polarimetric imaging system. The incident beam transmits 
through the PSG and is redirected by a mirror for top-down illumination of the specimen. Between the mirror 
and the specimen is a beam splitter oriented at 45°, which reflects the tissue-backscattered light through the 
PSA followed by the ICCD camera. The side view inset depicts the top-down illumination of the specimen and 
the beam splitter detection scheme to enable imaging in the exact backscattering geometry.
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calculation, as been observed previously26 and may be due to a thin-film coating27); MBS,trans matched the 
theoretical calculation (see Ref26. for details). Thus we solved for Msample, the only unknown remaining in Eq. (6). 
To increase signal-to-noise, we used 36 measurements (6 Sincident and 6 Sdetected polarization states versus the 
minimum 4 and 4 ) and the Mueller matrix calculation methodology outlined in Ref28.

PIRL-MS system
PIRL-MS measurements were performed using a fiber-coupled laser unit (2,850 nm, 800 picoseconds, 1 kHz 
rep rate, fibre diameter = 0.425 mm) from Light Matter Interaction, Etobicoke, Canada, outputting ∼300 mW 
average power after fiber coupling. Mass spectra were recorded inside a biological safety cabinet on a Xevo-
G2-XS time-of-flight mass spectrometer (Waters, Milford, MA, USA) using a dedicated tissue imaging station 
(Fig. 5, columnv, bottom graphic). The areas within the ellipses in Fig. 5, row B were sampled by continuously 
moving the PIRL-MS source within the area and averaging the mass spectral data. The signal was averaged over 
~ 3–4  mm area (corresponding to 10–20  s of spectral collection). The ion block mass spectrometry analysis 
interface has been described previously in Ref2.

Results and discussion
Porcine specimen: selecting optimal polarimetric signatures of adipose tissue
Porcine tissue was studied prior to the human breast specimens to explore polarization metrics that might yield 
useful contrast between fat and non-fat tissue components. Figure 3 shows the images, specifically its white-light 
photograph (Fig. 3A), retardance (B), linear diattenuation (C), circular diattenuation (D), Stokes linear DOP 
(E), Stokes circular DOP (F), Mueller linear DOP (G), and Mueller circular DOP (H).

Retardance, linear diattenuation, and circular diattenuation (Fig. 3B-D) obtained from polar decomposition 
analysis seem only modestly useful for fat discrimination. Retardance (Fig. 3B) is slightly higher in the muscle 
than in the fat, likely due to the birefringence of muscle fibres29. The fat induces more linear diattenuation than 
does the muscle (Fig. 3C) which is somewhat unexpected in light of previous reports29; however, this is not yet 
well-studied and perhaps diattenuation decreases in muscle as the porcine tissue ages29. Circular diattenuation 
appears to be slightly lower in fat compared to muscle (Fig.  3D). Overall, these three polar-decomposition-
derived Mueller polarimetric biomarkers do not delineate the fat regions well, even in this simple biological 
system.

The most prominent fat/non-fat contrast is found in the linear and circular DOP images using both Stokes 
and Mueller approaches, as seen in Fig. 3E-H. The fat is seen to be far more depolarizing (positive values but 
lower magnitude). This has been previously observed30 and can be attributed to the higher scattering coefficient 
(µs) of fat compared to that of porcine muscle which typically results in higher depolarization31,32 (Ref33. reports 
fat µs ≈ 110 cm-1 vs. porcine muscle µs ≈ 74 cm-1). It is unclear why the linear and circular DOP effects are similar 

Fig. 3.  Polarimetric imaging of the porcine tissue model, towards selecting the optimal fat-delineating 
polarimetric biomarkers in human pathologies. (A) White-light image, with the fat region on the left 
side and muscle on the right as labelled. (B) The retardance image, (C) linearly diattenuation image, (D) 
circular diattenuation image. (E-H) Stokes and Mueller DOP images using linear (E, G) and circular (F, H) 
polarization yields the most prominent fat discrimination.
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in the muscle area, as one expects the associated linear birefringence to induce more linear depolarization 
randomization34. This may be due to the relatively low difference in retardance between the muscle and fat 
(Fig. 3B).

Interestingly, the linear DOP images seem less uniform in an otherwise homogeneous region; for example, 
notice the higher values in the top left corners of each image (Fig. 3E and G). Additionally, the edges of the 
tissue, particularly on the right side, appear to increase sharply more so in the linear compared to circular DOP 
images. This may stem from the abrupt changes in curvature at the edges/corners of the specimen, resulting in 
varying angles of incidence which can induce strong linear diattenuation effects35. Indeed, this is corroborated 
by the linear diattenuation image Fig. 3C which also exhibits sharp value changes in the corners/edges of the 
tissue (compare to circular diattenuation of Fig. 3D). Linear polarization-based metrics, including linear DOP, 
are thus likely more sensitive to changes in curvature which become important when imaging the uneven human 
breast resections.

Overall, the porcine polarimetric imaging suggests that linear and circular DOP measurements offer the 
most robust fat/non-fat contrast, thus we now proceed to polarimetrically examine human breast normal and 
tumour resections through linear and circular DOP imaging.

Human breast specimens: polarimetric discrimination between fat and non-fat
Figure 4 shows the white-light images (row A) and stained histology slices (row B) of resected patient breast 
tissue specimens. Healthy specimens are H&E-stained and cancer specimens are ORO-stained (see Sect. 2.1 for 
details). Overall, it is clearly observed in the histology images that the cancer specimens are noticeably more 
heterogeneous than the healthy specimens, particularly exhibiting more intermixed fat regions. Also notice that 
the fatty areas are not visually identifiable in the white-light images of the cancer specimens compared to normal 
specimens, demonstrating the need for staining-free polarimetric identification.

The fat and non-fat region of each specimen are demarcated by the segmentation masks in row C with orange 
and purple contours, respectively (see Fig. 1 and related text for details on these masks). Since both Mueller- and 
Stokes-based DOP measurements yielded fat/non-fat contrast in porcine, we use composite metrics for linear 
and circular DOP which combine Mueller and Stokes quantities as defined in Eq. (5) and Eq. (3), respectively. 
Row D displays the composite linear degree of polarization (LL-DOP) and row F displays composite circular 
degree of polarization (CC-DOP) images of each specimen; all images are displayed within the same color bar 
range between − 0.7 and + 0.2.

The segmentation masks are laid over the LL-DOP and CC-DOP images to count the number of pixels that 
lie within the fat region (orange) and non-fat region (purple) of each specimen as shown in the corresponding 
histograms of row E and row G, respectively. We utilize the histograms, shown in row E and G, to gain a general 
indication of DOP-based differentiation between fat and non-fat by simply considering the differences (∆) 
between the mean values of fat (<F>) and non-fat (<NF>) pixels. To more rigorously evaluate fat discrimination 
performance, receiver operating characteristic (ROC) curves with accompanying area under the curve (AUC) 
values are shown for CC-DOP images in row H; we only show these curves for CC-DOP images since they yield 
larger ∆ values. The AUC values for the LL-DOP images were 0.42, 0.47, 0.84, and 0.83 for Healthy Specimens 
1 and 2 and Cancer Specimens 1 and 2, respectively. Notice that LL-DOP only outperforms CC-DOP for one 
specimen, namely Cancer Specimen 2, while offering no fat discrimination for Healthy Specimens 1 and 2 
(AUC < 0.5). These pixel-wise ROC curves were generated by plotting (x, y) = (1-specificity, sensitivity) for 
each given ‘classification threshold setting’ incremented from − 1 to + 1 (i.e., the full range of possible CC-
DOP values) in steps of 0.05 (-0.95, -0.90, …, + 0.90, + 0.95). Thus, for each threshold setting, a sensitivity and 
specificity calculation is performed on a per-pixel basis using the numbers of true and false positives and true 
and false negatives as follows. For each iteration of a classification threshold setting, true positives are considered 
pixels which are located in the fat region (orange region of the segmentation masks; see row C) with values that 
are above the given threshold setting, while true negatives are considered pixels located in the non-fat region 
(purple region of the segmentation masks) with values below the given threshold setting. False positives are 
pixels in the non-fat region with values above the given threshold, and false negatives are pixels in the fat region 
with values below the given threshold. Note that pixels in the ‘undefined’ region (colour-coded gray in the 
segmentation masks) are not used in these calculations.

More quantitative comparisons and statistical tests of significance are possible, but will await more 
accurate contextualization with histology ‘ground truth’ results (issues of slight tissue deformation during slide 
preparation, usage of two stains, precise co-registration due to sub-surface location of the histology slice, etc.).

Consistent with the porcine study summarized in Fig. 3, we conclude that human fat regions also tend to 
exhibit higher linear and circular DOP values. However, it is observed that CC-DOP offers greater and more 
consistent contrast between fat and non-fat, whereby the mean difference between fat and non-fat (denoted by ∆ 
on each histogram plot) is higher in CCDOP histograms. Again, it appears that linear DOP may be more sensitive 
to changes in curvature; for example, Healthy Specimen 1 is hemispherical in shape (e.g., see specimen image in 
Fig. 2) causing a ring-like band of specular reflection to appear (see arrows in Fig. 4, row D, col.i); although this 
effect is also somewhat seen in the CC-DOP image in Fig. 4, row F, col.i, but much less prominent. For circular 
DOP, interestingly, the highest values are seen in Healthy Specimen 1 which has the largest aggregation of fat, 
suggesting potential proportionality between CCDOP values and adipose content. Beyond fat discrimination, 
it is also noteworthy that dense cellular regions appear to exhibit high magnitude negative CC-DOP values. For 
example, notice that the ‘ductal cell cluster’ area of Healthy Specimen 2 (labelled in the histology image of Fig. 4, 
row B, col.ii) corresponds to highly negative values in the corresponding CC-DOP image, and similarly for 
Cancer Specimen 1’s densely packed cellular region in the upper left corner (see Fig. 4, row B, col.iii); also see 
Fig. 1 for more detailed views of the histology images. Therefore, higher CC-DOP values and high magnitude 
negative values may be useful in identifying fatty and dense cellular regions, respectively.
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Fig. 4.  Investigation of fat discrimination via CC-DOP imaging of human breast tissues. White-light images 
(rows A) and stained histology slices (rows B) are shown for two healthy specimens (H&E-stained) and two 
cancer specimens (ORO-stained). Fat/non-fat segmentation masks (rows C) indicate the locations of the fat 
and non-fat regions of the specimens, which are superimposed on the LL-DOP images (row D) and on the 
CC-DOP images (row F) to enable the fat/non-fat histograms shown respectively in row E and row G. Row 
H shows ROC curves with corresponding AUC values to evaluate fat segmentation performance of CC-DOP 
images, indicating strong fat discrimination for each specimen with exception of Healthy Specimen 2 which 
shows some fat discrimination. Overall, CC-DOP values appear to correlate with fat content (higher values) 
and potentially dense-cellular content (high magnitude negative values).
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Circularly polarization’s sensitivity to scatterer size: the fat/non-fat contrast mechanism
The underlying mechanism responsible for the correlation between (1) fatty regions and higher CC-DOP values 
(mainly in the positive regime) and (2) cellular regions and lower CC-DOP values (in the negative regime) may 
be due to circular polarization’s sensitivity to ‘scatterer size’. Adipose tissue has been measured to have a far larger 
scatterer size than non-fat tissue in breast specimens, for example, by a factor of ~ 2.5 in Ref36. , and by larger 
factors in Ref37. (also, the size difference between fat cells and ductal cells can be somewhat seen in the histology 
image of Healthy Specimen 2 in Fig. 1). Fat cells (lipid globules) are the main scatterers in adipose breast tissue 
(diameter d ~ 20–120 μm38), whereas the scatterers in non-fat breast tissue are mainly cell nuclei (d ~ 5–15 μm) 
and smaller sub-cellular constituents (e.g., organelles with d < 2 μm39), and collagen fibres (d > 1 μm diameter40); 
see Refs36–38,41,42. for additional details.

Circular DOP takes on higher values through a higher preponderance of helicity-preserved light, whereas 
lower values arise from a higher fraction of helicity-flipped light (e.g., see Eq. (3)). Previous studies, including 
our own work31,43–45, have shown that helicity preservation occurs in media consisting of larger scattering 
particles, and helicity-flipped light dominates in media consisting of smaller particles (the actual sizes for this 
categorization depend on Mie scattering parameters, including laser wavelength, refractive index mismatch, and 
particle shape44). Thus the observed mostly positive values of the circular DOP corresponding to the adipose 
regions of each specimen suggest a helicity-preservation response of the larger fat cells. Conversely, since the 
lowest (negative) values generally corresponded to highly cellular regions, the observed helicity-flip responses 
may be responsible due to the smaller-sized nuclei along with sub-micron organelles which can act as Rayleigh 
scatterers46 (Rayleigh scatterers are known to induce strong helicity-flip responses via intense backward scattering 
(small g-factor)44). Also note that scattering from cylinders (i.e., collagen fibres) also results in negative circular 
DOP values, depending on their size and other parameters47, which may explain the somewhat negative CC-
DOP values in collagenous regions.

We thus posit that circular polarization offers a unique advantage for MS guidance in differentiating fat from 
non-fat and in detecting highly cellular regions through its scatterer-size dependency.

Polarimetrically-guided PIRL-MS: fat avoidance
The finding that higher CC-DOP corresponds to fatty regions can be exploited to generate binarized polarimetry 
maps for PIRL-MS guidance. Such maps mark the presence of fat in each specimen by colour-coding each 
pixel of the CC-DOP images red if the pixel value is above the specified threshold of −0.05 and colour-coding 
pixels blue when below that threshold, as seen in Fig. 5, rows A and B. The threshold of −0.05 was chosen 
through examination of the CC-DOP images and their histograms in columnsiii and v of Fig. 4 which show that 
the histograms of fat pixels generally range from approximately −0.05 and greater for each specimen. Healthy 
Specimen 2 appears to contain ‘false positives’ where the non-fat regions exhibit CC-DOP values above −0.05; 
however, this is less problematic than ‘false negatives’ (i.e., fat not identified) which would result in a PIRL-MS 
contamination risk. The precise threshold choice is obviously somewhat arbitrary, and a more rigorous analysis 
of resultant sensitivity to chosen values is warranted; this will be pursued in future studies as the number of 
human samples is increased and histology correlation issues alluded to before are streamlined.

The resultant maps in Fig. 5, row A do not present uniformly colour-coded adipose regions due to inherent 
biological heterogeneity and analysis artefacts. Thus a maximum filter is applied which replaces each pixel with 
the brightest pixel that is found within a 2-pixel radius (provided by Python library SciPy48), yielding more 
continuous and uniform red-coloured fat regions, as seen in Fig. 5, row B. Note that a grey border was also 
placed along the outer edges of each specimen, labelled as ‘undefined’, due to the frequent appearance of edge 
artefacts and resultant uncertainty along the rim. These maps now provide polarimetric guidance away from 
fatty tissue (to avoid with PIRL-MS). The step-wise workflow of polarimetrically-guided PIRL-MS is depicted 
in column v.

As a representative assessment of these discretized maps, PIRL-MS analysis was performed on Cancer 
Specimen 1 according to the map in Fig. 5, row B, col. iii. This is achieved through user-mediated co-registering 
of the polarimetry map to the optical image of the specimen; in the future, this process can be automated using 
real time image co-registration and augmented reality as previously demonstrated with PIRL-MS9. As expected, 
the red-coloured fatty region yields the lowest MS signal (i.e., total ion count), whereas the blue-coloured non-fat 
region yields the highest and most feature-rich MS signal (Fig. 5, rows C and D). Additionally, PIRL sampling 
of the adipose region indeed resulted in lipid liquefaction and hence a contamination risk, demonstrating the 
need to avoid fatty regions.

Interestingly, PIRL-MS detected 6 known breast-cancer-correlated m/z peaks previously seen in desorption 
electrospray ionization MS studies10. These are labelled in orange (tentative assignments) and the rest of the 
abundant ions (to be characterized) in black. Importantly, notice that these peaks are least prominent or 
absent (e.g., m/z= 391.2 and 655.5) in the fat region’s spectral profile; the m/z= 572.5 peak corresponding 
to a chlorinated adduct of ceramide Cer(d34:1) seen previously in many PIRL-MS studies of other cancerous 
tissues1–3,9 is also absent from the adipose area.

These discretized maps therefore enable guidance away from adipose tissue to avoid lipid contamination 
whilst enabling rapid acquisition of pathological information to yield a diagnosis, saving significant MS analysis 
time. Both such feats significantly improve the clinical promise of PIRL-MS.

Conclusions
This study demonstrates that adipose and non-adipose tissue of clinically-realistic normal and cancerous human 
breast tissue (thick, uneven, non-sectioned, unstained) can be highlighted through label-free polarimetric 
imaging, towards time-efficient and contamination-free PIRL-MS oncological characterization. Polarimetric 
guidance was achieved through circular DOP imaging, which was advantageous relative to other polarization 
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metrics potentially through its scatterer-size sensitivity mechanism, along with its apparent insensitivity to 
irregular surface topologies. A polarimetric guidance map was assessed with PIRL-MS, affirming the map’s 
tissue segmentation accuracy. The utility of the polarimetry-MS hybrid technology approach in unprocessed 
bulk human pathology tissues may prove advantageous in eventual clinical deployment.

Data availability
Data underlying the results presented in this paper are not publicly available at this time due to patient confiden-
tiality but may be obtained from the corresponding author upon reasonable request.
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