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Abstract: The tumour-stroma ratio (TSR) has been explored as a useful source of prognostic
information in various cancers, including colorectal, breast, and gastric. Despite research showing
potential prognostic utility, its uptake into the clinic has been limited, in part due to challenges
associated with subjectivity, reproducibility, and quantification. We have recently proposed
a simple, robust, and quantifiable high-contrast method of imaging intra- and peri-tumoural
stroma based on polarized light microscopy. Here we report on its use to quantify TSR in
human breast cancer using unstained slides from 40 patient samples of invasive ductal carcinoma
(IDC). Polarimetric results based on a stromal abundance metric correlated well with pathology
designations, showing a statistically significant difference between high- and low-stroma samples
as scored by two clinical pathologists. The described polarized light imaging methodology
shows promise for use as a quantitative, automatic, and standardizable tool for quantifying TSR,
potentially addressing some of the challenges associated with its current estimation.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In recent years, extensive research efforts have been focused on identifying and developing new
prognostic biomarkers for various types of cancer. Molecular-based prognostic and predictive
tests have been used in subtypes of breast [1] and colon [2] cancer to identify patients at high
risk of recurrence and select them for adjuvant chemotherapy; despite their high cost, some of
these assays have been incorporated into clinical practice [3]. It has also become evident that
the tumour microenvironment (TME) offers an additional rich source of prognostic information
[4,5]. Solid tumours are comprised of more than just the tumour mass itself: the connective and
supportive framework components also play a major role in tumour maintenance, growth, and
metastasis [5,6]. Such stromal tissue components include the connective tissue matrix, collagen
and elastin fibers, microvasculature, lymphatics and inflammatory cells, and fibroblasts among
others.

One TME parameter that has been subject of multiple recent prognostication studies is the
tumour-stroma ratio (TSR). This assessment of the quantity of stromal tissue relative to the
quantity of tumour tissue (cellular-dense mass) has been shown to hold prognostic value in
various solid organ cancers [7–17]. However, TSR is not routinely assessed in clinical practice
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for solid tumours, although tumour cellularity is an important component of the Residual Cancer
Burden Index that has gained clinical acceptance as a tool to examine breast carcinoma after
presurgical systemic therapy [18]. In previous research studies, TSR is typically assessed in a
semiquantitative manner by a pathologist viewing hematoxylin and eosin (H&E) stained slides.
The pathologist selects specific regions of interest (ROIs) and then classifies these into two
(or three) categories corresponding to high and low (or high, medium, and low) stroma based
on pre-determined threshold values [8,16]. Although partly subjective and largely qualitative
(categorical), TSR is a simple, inexpensive, and relatively quick metric to determine. The
majority of TSR studies have found that patients with tumours containing higher amounts of
stroma tend to have worse prognosis than those with lower amounts [10]. Its useful stromal
information content may complement the more expensive and laborious prognostic (including
molecular/genetic) tests that are currently in clinical use. Indeed, a robust and quantitative tool to
quantify TSR can allow for further clinical studies and its potential incorporation as a marker
that captures the prognostication information offered by the morphology of the tissue scaffolds
surrounding the tumours.

However, despite its prognostic promise and research studies, the TSR’s clinical uptake to
date has been rather limited. This is due to the challenges of standardization in methodology, the
reliance on pathologists’ qualitative estimates, and the extra work burden the scoring process
places on pathologists. This leads to difficulties with reproducibility, variability in results,
and challenges in inter-study comparisons [13,19]. For example, variables such as H&E stain
intensity, changes in microscopic examination conditions (e.g., 20x or 40x magnification) [13,19],
and selection of ROIs within the tumour slide [13] are all known to influence results. Several
groups have thus called for improved standardization and objectivity in TSR determinations
[13,16,19]. Some methodologies mitigating these problems have been reported, for example
by superimposing a grid with 300 random points on the selected ROI, and recording the tissue
category (tumour, stroma, or other) at each point. The number of points in each tissue category
was then tallied to determine the proportion of points in each [7,14,17]. However, this approach
is time consuming and challenging to implement, and has not been widely adopted.

Our group has recently developed a novel method of polarized light microscopy to image and
analyze the collagenous stroma in tumours [20–22], and has explored its utility in various TME-
important biomedical contexts. For example, we have derived a quantifiable stromal architecture
signature score, which was able to distinguish myxoid from sclerotic stroma, a differentiation
of potential clinical significance [21]. Further, we have identified differences in leading edge
stromal alignment within ER-positive / HER2-negative (luminal) invasive breast cancer samples
with low- and higher-risk of metastasis (as determined by OncotypeDX testing) [22]. Other
groups have also recently used Mueller-matrix-based polarimetric methods to examine prostate
[23], myocardial [24] and parenchymal [25] tissues and pathologies, often relying on advanced
statistical, fractal and correlation analysis of measured depolarization patterns to discern relevant
information. Our novel and simpler non-Mueller-matrix-based technique adds to this growing
area of scientific interest and scholarship.

In this study, we apply our group’s polarimetric method to examine stromal abundance in 40
unstained histology slides of human IDC, and test its correlation with the TSR scores determined
by practicing pathologists from adjacent H&E-stained slides. Our approach attempts to address
the primary issues associated with the current determination of TSR, namely its qualitative
scoring method and subjectivity. If successful, this reproducible and quantitative methodology to
separate between low-, medium-, and high-stroma groups warrants further study and validation.
Eventually, it may enable a simple and robust tool for incorporating a stromal prognostic indicator
into clinical use.
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2. Methods

2.1. Ethics

Institutional ethics approval was obtained from participating hospital institutions (University
Health Network and Sunnybrook Hospital, both in Toronto, Ontario, Canada). The need for
patients’ consent to examine the breast cancer histopathology samples was waived by the
ethics board due to the retrospective nature of the study and anonymization of personal health
information.

2.2. Samples

This study used 40 archival surgical resection samples of ER-positive / HER2-negative IDC prior
to any chemo- or radiation-therapy. The analysis used unstained 4.5 µm thick sections on charged
slides, from formalin-fixed and paraffin-embedded (FFPE) blocks. Sample preparation involved
chemical dewaxing to avoid possible polarization imaging artefacts [26]. No further processing
was required for polarimetric imaging. Adjacent slides were H&E-stained and imaged at 20x
magnification on an Aperio ScanScope CS (Leica Biosystems, USA) for the pathologists’ ROI
selection and TSR scoring.

2.3. ROI selection and TSR scoring

ROIs were chosen by a breast pathologist (CM), in a manner similar to prior TSR studies [8–12].
The pathologist viewed the H&E-stained adjacent slides and selected a rectangular ROI in the
invasive front region of the tumour, ensuring that tumour cells were present on all four sides of
the field of view consistent with previous TSR determination studies [19]. All ROIs across the
40 patient slides were similarly sized (∼ 1mm x 0.5mm). Since the purpose of this study was
not to assess the utility of the TSR as a prognostic factor, but rather to explore the ability of
our polarimetric approach to quantitatively determine TSR, only one ROI per patient slide was
chosen. The pathologist then estimated the proportion of stroma within the ROIs in increments of
10%, categorizing the slides in low (<40% stroma), medium (40-60%) and high (>60%) stroma
groups. A second breast pathologist (SN-M) then independently re-scored the same ROIs. The
pathologists were blinded to the polarimetry results, and the other study team members were
blinded to the pathologists’ scores.

The ROIs on the H&E images were used to locate the same ROI on the adjacent slide imaged
polarimetrically. The ROIs were matched by eye using tissue “landmarks” (specific defining
features of the region). Image processing and polarimetric analysis was then performed using
MATLAB software (Mathworks, USA). Stromal abundance as quantified by polarimetry was
hypothesized to correlate with the low-medium-high stroma categories determined by pathology.

2.4. Polarimetric method

Polarized light microscopy can enhance the contrast of birefringent materials (such as collagen) in
a largely non-birefringent background of other tumoural structures. No staining or contrast agent
is required. Imaging for this study was done using our group’s novel polarimetric methodology
previously described [20–22]. The process involves an AxioZoom V16 microscope (Zeiss,
Germany), which is fitted with two linear polarizers (Thorlabs, LPVISE100-A) on computer-
controlled motorized rotation mounts (PRM1.MZ8, Thorlabs, USA). The pathology slides are
positioned between the two linear polarizers oriented perpendicular (crossed) relative to each
other. The crossed polarizer pair is then rotated though 90°, stopping in 5° increments, and at
each angular stop a polarimetric image is taken. Analysis of the resultant 18-image stack enables
several parametric tissue images to be derived that are independent of the measurement geometry;
that is, we remove the artefactual image contrast variations that depend on the crossed polarizers’
orientation relative to the tissue’s birefringent collagenous structures. The three parametric
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images thus derived reflect (1) birefringence (collagen) signal intensity, (2) its 2D orientation in
the transverse plane, and (3) its abundance [20–22]. In this TSR study, the images of the third
derived parameter, that of stromal abundance, were used.

2.5. Polarimetric image analysis and quantitative metrics extraction

Figure 1 presents an example of a derived polarimetric abundance image. The value, and thus
the brightness, of any pixel in this image is proportional to the amount of birefringent connective
tissue (in this case, collagenous stroma). It is calculated on a pixel-by-pixel basis, with a score
of unity signifying a pixel that contains only birefringent tissue. As previously described [22],
birefringent tissue exhibits an intensity modulation that follows

Intensity ∝ sin2(2τ) (1)

where τ is the angle between the tissue’s optical axis and the polarization direction of the
analyser. Consequently, whether a given pixel denotes a birefringent tissue can be determined
via a goodness-of-fit (R2) comparison between the observed angular intensity variation and the
theoretical dependence of Eq. (1). As such, this information can be used to separate out the
collagenous stroma from other tissues using a simple threshold (above a certain goodness-of-fit
value ∼ stroma; below it ∼ non-stromal tumorous tissue). Our previously chosen threshold value
of R2 > 0.75 proved to be a suitable differentiator [21], although a more rigorous approach to its
selection is certainly possible. For the current study, this threshold helped calculate the fraction
of the ROI containing birefringent tissue, by dividing the number of pixels with R2 > 0.75 by
the total number of pixels in the ROI. The resultant ratio was compared to pathologist’s TSR
categories.

Fig. 1. Derived polarimetric abundance images and corresponding H&E images. (a) A
full-slide polarimetric abundance image of human IDC derived from the stack of 18 angular
crossed-polarizer unstained slide images. Brighter regions correspond to those with a higher
amount of birefringent tissues (collagen). The red rectangle corresponds to the same ROI as
that displayed by the green rectangle in (c), as indicated by the blue arrow. (b) The magnified
polarimetric ROI. (c) An H&E-stained full-slide image corresponding to the image derived
in (a). All H&E slides in this study were adjacent to those analyzed by polarimetry. (d) The
magnified H&E ROI.
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2.6. Statistical methods

The pixel-wise abundance parameter was calculated for each ROI, typically yielding 60,000-
90,000 values for each (number of pixels in each ROI). Then the ratio of pixels with an abundance
score > 0.75 relative to the total pixel count was determined, and was recorded as the polarimetric
estimate of TSR. These estimates were then compared across the pathologist-determined groups
(high-, medium-, and low-stroma) using a non-parametric Kruskal-Wallis (KW) test (Mathworks,
USA) [27,28]. This statistical method was used to test the null hypothesis that the data in
categorical groups comes from the same distribution; it is intended for use with non-normally
distributed data. A statistically significant result (p< 0.05) signifies that not all the samples come
from the same distribution; in other words, that there are significant differences between at least
some of the groups. A post-hoc pairwise comparison, performed with Tukey’s test (Mathworks,
USA) [27,29], identified which groups are different from each other. The entire statistical analysis
was performed twice: each of the two pathologists’ set of scores was treated independently, and
was analyzed separately for correlation with polarimetry scores.

3. Results and discussion

The results of polarimetric imaging, analysis and quantification of stromal abundance in 40
unstained slides of IDC demonstrate the technique’s ability to differentiate between stromal groups
as scored by two clinical pathologists. Figure 2 shows the polarimetry-derived stromal abundance
ratio for the three TSR groups, for each pathologist. For the first pathologist, the mean abundance
score from the high-stroma group was highest at 0.44± 0.14 (mean± standard deviation). The
medium-stroma group yielded 0.41± 0.09, and the low-stroma group was 0.28± 0.13. The
KW test indicated that not all groups come from the same distribution (p= 0.012). Post-hoc
pairwise comparison indicated that a statistically significant difference was found between high-
and low-stroma groups (p= 0.014); however, no significant difference was found between the
polarimetric abundance scores of the medium-stroma group and the other two groups.

For the second pathologist, the polarimetric comparison yielded similar results. The mean
abundance score from the high-stroma group was highest at 0.41± 0.14. The medium-stroma
group yielded 0.39± 0.08, and the low-stroma group was 0.25± 0.13. Once again, the KW test
indicated that not all groups come from the same distribution (p= 0.025). Similar to above,
post-hoc pairwise comparison indicated that a statistically significant difference was found
between high- and low-stroma groups (p= 0.022), but not between the polarimetric abundance
scores of the medium-stroma group and the other two groups.

Despite some differences between the two pathologists’ scores (discussed below), these results
imply that polarimetry allows for a separation of low- and high-stroma groups. From a clinical
perspective, this is encouraging. Most TSR studies have indicated that patients with less stroma
tend to have better prognosis than those with its greater abundance [8–11]. This includes
improved overall [9,10,15], disease-free [9,10,11,15], and distant metastasis-free survival [10].
With further development, it may be possible to use this method to derive TSR reliably, with
promise of its utilization as a clinical prognostication tool.

While these are encouraging results, questions do remain over the significance of the medium-
stroma group and our current inability to separate it out. It is interesting to note that a slightly
different and commonly used Kolmogorov-Smirnov (KS) test (Mathworks, USA) [22,30] does
indicate a significant difference between medium- and low-stroma groups for both pathologists,
as visually suggested in Fig. 2 (p-values 0.008 and 0.018 respectively). However, here we chose
to employ and report on the more rigorous and appropriate KW non-parametric test. Statistical
analysis considerations aside, a recent study using low-, medium-, and high-stroma categories
in rectal cancer found that patients in the medium-stroma group did perform poorly on certain
outcome metrics (in some cases, even worse than those in the high-stroma group) [16]. Further
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Fig. 2. Boxplots showing the comparisons of the polarimetrically-derived abundance metric
to the three pathology-designated categories. For each group, the central red line shows
the median, the blue box indicates the 1st and 3rd quartiles, the whiskers indicate the
minimum and maximum values, and outliers are shown with a red “+”. The * indicates a
statistically significant difference (p<0.05). In the following data, µ represents the mean
and σ represents standard deviation. (a) Boxplot for pathologist 1. For high-stroma: µ=0.44,
σ=0.14, median=0.46; Medium-stroma: µ=0.41, σ=0.09, median=0.42; Low-stroma:
µ=0.28, σ=0.13, median=0.29. There is a statistically significant difference between the
high-stroma and low-stroma groups (p= 0.014). (b) Boxplot for pathologist 2. For high-
stroma: µ=0.41, σ=0.14, median=0.43; Medium-stroma: µ=0.39, σ=0.08, median=0.41;
Low-stroma: µ=0.25, σ=0.13, median=0.31. There is a statistically significant difference
between the high-stroma and low-stroma groups (p= 0.022).

study is clearly needed to enable polarimetric separation of this potentially important group from
the other two.

To better understand the detailed workings of this polarimetric stromal biomarker, we progress
beyond the means analysis and explore the distributions of the pixel-wise abundance parameter
for different pathologies. This is shown in Fig. 3, which displays stromal abundance results from
representative (a) high-stroma and (b) low-stroma samples (as designated by both pathologists).
As seen, the relative proportion of R2 > 0.75 pixels (within the dotted rectangles) is indeed
higher in (a) compared to (b), indicating a higher proportion of stromal pixels in accord with
the pathology categories. But spatial heterogeneity is also evident from these distributions: in
(a), and to a much greater extent in (b), a large fraction of pixels is clearly not described by
the sinusoidal modulation of Eq. (1) characteristic of birefringent collagenous tissues. This is
evidenced by the larger proportion of pixels in (b) with values outside the dotted red (stromal)
rectangle. Our methodology’s ability to detect and quantify these distributional differences in
stromal content is indicative of its rich and potentially useful information content, over and above
the currently used qualitative designations of overall average TSR categories (high, ±medium
and low stroma).

Despite similar polarimetric performance in comparison with both pathologists, we now
briefly examine the inter-pathologist variability of TSR scoring (Fig. 4(a)). As seen, overall the



Research Article Vol. 12, No. 6 / 1 June 2021 / Biomedical Optics Express 3247

Fig. 3. Abundance parameter pixel value histograms from representative samples, presented
as probability densities (area under curve= unity). Dotted red rectangles delineate the pixels
above the 0.75 threshold that were considered ‘stromal.’ (a) An abundance histogram of a
representative high-stroma sample. The rightward shift of values with a sharp peak indicates
a large proportion of pixels conforming to the theoretical intensity modulation via Eq. (1),
suggesting a region with high stromal content. The proportion of pixels contained in the
dotted box is 0.49. (b) An abundance histogram for a representative low-stroma sample. The
leftward shift of values indicates fewer pixels described by Eq. (1), as expected for a region
with a low stromal content. The proportion of pixels contained in the dotted box is 0.24.

pathologists tend to agree in terms of classification of ROIs into high-, medium-, and low-stroma
groups, but not in every case. This is further illustrated in Fig. 4(b), which shows pathologist
agreement on more granular increments of 10%. The second pathologist’s scores tend to be
higher, and there are several outliers (e.g., one sample was scored as 10% by the first pathologist
and 90% by the second). Figure 4(c) displays this ROI in question. Close visual examination
reveals a conceptual disagreement: the paleomorphic tissue (consistent with extracellular mucin)
is classified as “other” by one pathologist, and as stroma by the second.

Although not affecting our polarimetry-pathology correlation results, this inter-pathologist
scores analysis illustrates the need for a robust and quantitative method of determining the TSR:
despite an overall agreement between pathologists, there are ambiguities and challenges that
must be addressed to allow stromal assessment usage in the clinic.

We now briefly consider possible reasons for our inability to unambiguously distinguish
medium-stroma group from others. First, as discussed in the analysis of Fig. 2 above, a less-
rigorous KS test does reveal its statistically-significant separation from the low-stroma group, so
we are indeed ‘close’ to a robust low-medium-high three-group categorization. But perhaps the
most plausible remaining obstacle is the variation in the “ground truth” (the pathologists’ scores)
as described above. Evidently, it is easier to identify a sample that has a clearly low or a clearly
high TSR score. However, samples in the intermediate category are more difficult to classify
qualitatively; that is, there may be sufficient subjectivity and variation in histology scoring so
as to obscure any true differences between the medium-stroma and the other groups. It is also
possible that morphological variations in similarly-scored regions are a factor, as illustrated in
Fig. 5. The displayed ROIs were scored as 90% stroma by both pathologists; however, even to
the untrained eye, there are obvious visual differences. These could lead to variations in the
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Fig. 4. (a) Agreement of pathologists on TSR classification of IDC samples. Each box
shows the number of samples classified by the pathologist in that category. The pathologists
agreed on the classification of 29 of the 40 samples (darker blue boxes). (b) Interpathology
score comparisons, showing overall good agreement with notable exceptions (e.g., the circled
ROI, whose TSR scores were 10% and 90%). The numbers beside some symbols indicate
multiple data points with same scores. (c) ROI of one particular discrepant case (the one
scored as 10% and 90% - see red circled point in (b)). The difference in classification stems
from a lack of agreement over whether the paleomorphic tissue (consistent with extracellular
mucin) should be classified as “stroma”.
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corresponding polarimetric abundance scores, potentially contributing to the lack of difference
between medium-stroma samples and the other groups.

Fig. 5. Two ROIs scored as 90% stroma by both pathologists. (a) Despite its unanimous
high-stroma designation, there are many “empty pockets” visible within this ROI. This is in
contrast to (b), where the stromal fibers are more densely packed and no empty areas are
seen. Such differences could affect both TSR and polarimetric scoring and contribute to
our resultant inability to polarimetrically discriminate between high- and medium-stroma
groups.

Despite our apparent inability to polarimetrically single out the medium-stroma group, the
results are still encouraging. The polarimetric method allows for a separation of low- and
high-stroma groups, which is interesting from a clinical perspective. As mentioned above,
patients with less intratumoral stroma tend to fare better than those with more abundant stroma
[8,10,11]. Reliably identifying “good” and “bad” prognostic groups may prove useful as a means
of identifying low risk patients who do not require a molecular multi-gene assay, thus leading to a
reduction in overall testing costs. With further development, this method may provide additional
prognostic information for these patient cohorts.

Moving forward, we are exploring various means of gleaning additional information from our
polarimetric images in order to improve quantitative separation between groups. One possibility
being actively pursued in our lab is combining the abundance metric with others (e.g., alignment
metric [20–22]) in order to enhance contrast between tissue types; the polarimetric alignment
biomarker can highlight the presence and quantify the physical arrangement characteristics of
stromal tissues in contrast to the cellular tumour compartment [20]. We are also exploring the
utility of additional features of the pixel intensity distributions (Fig. 3), including higher orders
of the central moment such as skewness and kurtosis [23–25]. Finally, we are investigating
automatic (machine learning) methods for delineating tumour boundaries and selecting ROIs,
in an effort to further “objectivize” our method by removing some subjectivity inherent in the
pathologist-assisted ROI selection. These various methodological refinements will be necessary
to test the ability of polarimetrically-determined TSR to predict clinical outcomes, and to address
other clinically important questions.

There is currently a major push for automated digital techniques to replace or supplement
pathologists’ work in answering questions of clinical relevance. This is true in the context of
TSR studies as well as in other pathology settings more broadly (e.g., detection and classification
of various diseases [31,32] and tissue type classification based on computational image analysis
[33], recently enhanced by increases in remote work during the Covid-19 pandemic [34]). In
light of this, significant resources have been devoted to the development of new digital and
computational methods. The polarimetric methods we are developing align well with this need
for automation, computation, and standardization, providing an alternative to other emerging
computational image analysis techniques being investigated [e.g., 33] as part of the larger digital
pathology trend [31,32,34]. In this context, our approach is another potential route for assessing
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TSR, with its advantages of simplicity, ease of use, low cost, fast imaging/analysis times, high
stromal contrast, quantification, and avoidance of potential staining artefacts.

4. Conclusion

The tumour-stroma ratio has been extensively studied and holds promise as a prognostic biomarker
in various types of cancer. However, despite evidence suggesting its prognostic capabilities, there
remain challenges that inhibit its widespread clinical uptake including its subjectivity and lack of
standardization. We present a method of quantitatively assessing the stromal content in samples
of invasive ductal carcinoma, using a novel polarimetric imaging technique. Our results show a
statistically significant difference between high-and low-stroma groups (as scored by clinical
pathologists) using just one polarimetry metric representing stromal abundance; the differential
detection of medium-stroma cohort is close but currently not demonstrated. The ability to
unequivocally separate various IDC patient cohorts is interesting scientifically and promising
clinically, as for example there are different prognoses for patients with low versus high amounts
of tumoural stroma. Future work will explore further morphological polarimetric quantification
to improve the accuracy and the robustness of the resultant TSR scores, and investigate the
possibility of automated ROI selection to minimize pathologists’ subjectivity. Such refinements
of the proposed polarized light imaging methodology could furnish a robust and reproducible
stromal biomarker tool to assist pathologists in their prognostication and predictive studies of
solid organ malignancies.
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