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BACKGROUND: Routine histopathology cannot distinguish between clinically diverse luminal A and B breast cancer subtypes
(LBCS), often requiring ancillary testing. Mueller matrix polarimetry (MMP) offers a promising approach by analysing polarised light
interactions with complex breast tissues. This study explores the efficacy of using MMP for luminal subtype differentiation.
METHODS: We analysed 30 polarimetric and 7 clinical parameters from 116 unstained breast core biopsies, LBCS classified using
the BluePrint® molecular assay. These features were used to train various machine learning models: logistic regression, linear
discriminant analysis, support vector machine, random forest, and XGBoost to distinguish luminal subtypes. Receiver operating
characteristic curve (ROC) analysis was used to each to assess diagnostic performance using area under the curve, accuracy,

sensitivity, and specificity.

RESULTS: Using the top six most prognostic polarimetric (three) and clinical (three) biomarkers ranked by feature importance, the
best-performing random forest model achieved an accuracy of 81% (area under ROC = 86%), with both sensitivity and specificity at
75% on an unseen test set, indicating moderately promising, clinically informative performance.

CONCLUSIONS: MMP, particularly its selected Mueller matrix elements, combined with clinical biomarkers show promise in
distinguishing LBCS as validated against BluePrint®. By detecting subtle differences in tissue morphology, this approach may
enhance breast cancer prognosis and help guide treatment decisions.
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INTRODUCTION
Breast cancer continues to be a significant cause of cancer-related
morbidity and mortality worldwide [1-3]. Breast carcinoma is a
biologically diverse disease with variable prognosis and response
to systemic therapies, classified into four intrinsic distinct
molecular subtypes by gene expression profiling [4, 5]. Among
these, luminal breast cancers—characterised by oestrogen recep-
tor (ER) positivity and human epidermal growth factor receptor 2
(HER2) negativity—constitute a major category [4, 6]. These
cancers are further divided into luminal A and luminal B subtypes,
each with unique prognosis and therapeutic implications [4, 6, 7].
In the last two decades (since the emergence of the molecular
classification), the definition of luminal subgroup by surrogate
immunohistochemical markers has shifted; currently accepted
definitions are that luminal carcinomas characteristically express
oestrogen receptor (ER) with variable cell proliferations [4, 8]. HER2
overexpression is the hallmark of ERBB2-overexpressing tumours
that also lack ER and progesterone receptor (PR) expression [4, 9].
Basal-like carcinoma fails to express ER, PR, or HER2 [4, 5, 9].
Luminal A tumours are typically ER-positive, PR-positive, low in
Ki-67 proliferation index, and have a better prognosis with less

aggressive clinical behaviour [5, 6, 9]. In contrast, luminal B
tumours, although also ER-positive, tend to have a higher Ki-67
index, lower PR expression, higher histologic grade and are often
more aggressive with a poorer prognosis compared to luminal A
tumours [5, 6, 10]. The differentiation between luminal A and B
subtypes is crucial for tailoring treatment strategies [6, 11].
Luminal A patients often respond well to hormonal therapies,
while luminal B patients may require additional cytotoxic
chemotherapy due to their more aggressive nature [5, 6, 11].
Despite the importance of this distinction, traditional histopatho-
logical methods frequently fall short, as both subtypes can appear
remarkably similar on hematoxylin and eosin (H&E) stained
sections (Fig. 1) [8]. That said, molecular tools based on
commercially available multigene assays have been most quite
successful in predicting tumour biologic behaviours and ther-
apeutic responses in early-stage luminal breast carcinoma
patients, and their use was adopted by National Comprehensive
Cancer Network [6, 12, 13].

One of these assays is the BluePrint® and MammaPrint® tandem
based on 80- and 70-gene sets, respectively [12-15]. The former is
designed to identify the molecular subtype by analysing gene
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Fig. 1

Representative hematoxylin and eosin (H&E) stained sections of luminal A and luminal B breast cancer biopsies at 10x (top row)

and 40x magnification (bottom row). Luminal A sections (first two columns, green border) and luminal B sections (last two columns, red
border) display intermediate-grade invasive ductal carcinoma (no special type). Note that tumour architecture and nuclear features are similar
across subtypes, underscoring the difficulty of A vs B differentiation. Hormone receptor status: ER+/PR+/HER2—.

expression patterns involved in signalling pathways that promote
cancer growth, providing insights into the tumour biology of
luminal breast cancers [12, 13, 15]. MammaPrint® evaluates the
risk of cancer recurrence, specifically the risk of metastasis by
analysing the expression of 70 genes and predicts response to
adjuvant and neoadjuvant chemotherapy beyond histopathology
and immunohistochemical surrogates [12-15]. Despite their
advanced capabilities, these methods come with significant
drawbacks. They are expensive, involve time delays, require
specialised infrastructure, and may not be accessible in all clinical
settings, particularly in resource-limited regions [16, 17]. These
challenges highlight the need for alternative affordable diagnostic
approaches that are both effective and accessible.

Mueller matrix polarimetry (MMP) presents a promising
approach for assessing the structural properties of tissues through
polarised light measurement [18-22]. Studies have demonstrated
its potential utility in oncology, where it has been used to
correlate polarimetric parameters with clinical outcomes such as
recurrence [23, 24], survival rates [25], and tumour-stroma
interactions, particularly in collagen-rich tumour microenviron-
ments [23, 26]. In breast cancer specifically, MMP has shown
potential for distinguishing healthy, benign, and malignant tissues
and for providing quantitative insights into tissue microstructures
that are key to cancer diagnosis and progression [22, 27]. For
instance, Pham et al. applied Mueller matrix imaging to human
breast tissue, using MM elements such as M23, M32, and M44 to
distinguish tissue types, with M23 showing higher intensity in
healthy tissues while M32 and M44 exhibited reduced intensity in
malignant samples [27]. Similarly, Xia et al. classified breast cancer
cells based on receptor protein expression with 88% accuracy by
analysing polarimetric data using convolutional neural networks
and demonstrated that MMP can visualise intracellular fibrous
actin, a critical factor in tumourigenesis and metastasis [28]. Dong
et al. further highlighted the utility of MMP in tracking breast
ductal carcinoma progression by analysing polar decomposition
parameters and texture features, providing quantitative evidence
for monitoring disease stages and treatment outcomes [29].
Together, these findings underscore the versatility of MMP as a
promising powerful tool for breast cancer assessment, offering
quantitative insights that complement existing diagnostic meth-
ods by distinguishing healthy from cancerous tissues and aiding in
disease progression analysis.

The present study thus aims to evaluate whether MMP-derived
polarimetric parameters alone, or in combination with clinical
biomarkers, can aid in distinguishing luminal A from luminal B

British Journal of Cancer (2025) 133:1916-1925

breast cancer subtypes at the diagnostic stage. By integrating
supervised machine learning (ML), we seek to optimise feature
selection and improve classification performance. To test this, 116
unstained human pre-operative breast cancer core biopsy samples
were analysed using MMP, with findings correlated against
genomic classifications provided by BluePrint® and MammaPrint®.
To ensure the polarimetric results reflect the full structural
complexity of the tissue, the entire biopsy slide was analysed
without user-dependent input from pathology for region of
interest (ROI) selection, allowing for a comprehensive, indepen-
dent and unbiased objective evaluation of the full core biopsy
tissue sample.

METHODS

Human breast cancer samples

Institutional ethics approval was obtained from the participating hospital
institutions, University Health Network and Sunnybrook Hospital, both
located in Toronto, Canada. The requirement for patients’ consent to use
the breast cancer biopsy samples was waived by the ethics board due to
the retrospective nature of the study and the anonymization of patient
information.

Consecutive (sequentially identified without selection bias) ER+/HER2—
invasive breast carcinoma diagnosed on core biopsies were identified from
the institutional pathology database (N=116 patients). Each sample
contained between 1 to 3 tissue cores, resulting in varying size of imaged
tissue areas. The luminal A cohort included 66 patients, while the luminal B
cohort comprised 50 patients. The subset of patients who had clinical data
useful for ML analysis was smaller (N. = 68 patients), with 42 classified as
luminal A and 26 as luminal B. The investigated clinical parameters were:
Nottingham grade scores obtained from both the diagnostic biopsy and
post-surgical resection specimens, primary tumour size, patient age at
diagnosis, histologic subtype, number of lymph nodes with confirmed
metastases, and number of sentinel (‘hot’) lymph nodes identified as
suspicious and subsequently examined for metastatic involvement.
Luminal A vs B classification of these samples was performed using
genomic profiling (BluePrint® and MammaPrint®). Unstained 4.5 um thick
sections were prepared on charged microscope slides from FFPE (formalin-
fixed, paraffin-embedded) tissue blocks that were used for the molecular
assay. Minimal sample preparation involved chemical dewaxing to avoid
potential polarisation imaging artifacts [25, 30-32]. No further processing
was required for polarimetric imaging.

Polarimetric image acquisition and feature extraction

Mueller matrix (MM) imaging was utilised to capture the structural
characteristics of unstained breast cancer biopsy samples, providing
comprehensive polarisation data across the entire tissue section [23, 33].
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Fig. 2 Mueller matrix microscopy system and representative polarimetric images of breast cancer biopsies. a Schematic of the Mueller
matrix microscopy setup. Light from the source (Lamp) passes through a collimator (Col), a linear polarizer (P1), and a quarter-wave plate
(QWP1) to form the polarisation state generator (PSG). After interacting with the sample, transmitted light passes through the polarisation
state analyser (PSA; QWP2 and P2), a microscope objective (Obj), a tube lens (TL), a 630 nm filter, and is captured by a CMOS camera.
b Photograph of the Mueller matrix microscopy system. ¢, d Representative polarimetric images of human breast core biopsy samples,
showing H&E staining, depolarisation, diattenuation, and the M44 Mueller matrix element for luminal A (c) and luminal B (d) cases. Each image
includes a 1.5mm scale bar. Visual differentiation using these representative polarisation images remains challenging due to tissue
heterogeneity, motivating the application of supervised machine learning; see text for details.

Importantly, this method ensured full slide coverage without the need for
pathologist-assisted (and thus somewhat subjective) ROl selection,
allowing for an unbiased assessment of the tissue’s polarisation properties.
For each biopsy, 24 polarimetric images were acquired using different
configurations of the polarisation state generator (PSG) and polarisation
state analyser (PSA), following the approach outlined by Tumanova et al.

[23]. This image acquisition methodology increased the robustness and
signal-to-noise ratio (SNR) of the polarimetric measurements [23, 33]. The
experimental setup is illustrated in Fig. 2a, b.

The polarimetric system consisted of a Mueller matrix polarimetry
module integrated into a standard stereo zoom microscope (Axio Zoom
V16, Zeiss) equipped with a Plan Neofluar Z 1X/0.25 NA objective lens. The
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Fig. 3 Relative feature importance plot obtained using the random forest classifier. Features are Mueller Matrix polarisation (MMP)
parameters and clinical variables as listed on the y-axis with their respective importance scores on the x-axis. Asterisks indicate the top six

features contributing most to the classification models.

PSG, which included a rotatable linear polarizer (LPVISE100-A, Thorlabs)
and a rotatable quarter-wave plate (AQWP05M-600, Thorlabs), modulated
the incident light polarisation, while the PSA, composed of the same
elements but in reverse order, analysed the polarisation state of the
transmitted light after interaction with the tissue. The microscope’s LED
light source [llluminator HXP 200C (D), Zeiss] emitted 310W of
uncollimated white light, which was passed through a filter centred at
630 nm (ET630/75 or ZET630/10, Chroma). Images were acquired using a
Hamamatsu ORCA-Flash4.0 V3 Digital CMOS camera with a 2048 x 2048
pixel array and a pixel size of 6.5 6.5 um> At a magnification of 7x, this
setup provided a field of view of 18.9x 18.9 mm? and an optical lateral
resolution of 13.9 um. The resolution was validated using a 1951 USAF
resolution target (R3L3S1N, Thorlabs) [33]. To calibrate the system, we
measured the input Stokes vectors at each pixel using a blank (air) sample,
and subsequently calculated the output Stokes vectors with the reference
samples (air and a retarder with known optical properties) in place [33].
This pixel-by-pixel calibration approach corrects for spatially dependent
distortions arising from off-axis rays and ensures high spatial fidelity
[33-36]. The system acquires 24 intensity images for different PSG/PSA
configurations, enabling direct calculation of the Mueller matrix via Stokes
vector formalism. While this exceeds the minimum 16-image requirement,
the 24-image acquisition improves signal-to-noise ratio, enhancing overall
data quality [31, 33-36]. In this study, calibration accuracy was considered
acceptable when the difference between measured and theoretical
Mueller matrices fell within a ~1-5% range.

Once the polarimetric images were acquired for the breast biopsy
samples, pixel-by-pixel calculations of the Mueller matrix were performed
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using the Stokes formalism, as previously detailed [23]. From these matrices,
key polarimetric parameters—depolarisation, retardance, and diattenuation
—were extracted using the Lu-Chipman MM polar decomposition (MMPD),
providing insights into tissue anisotropy and depolarisation [37]. In parallel,
additional polarimetric parameters were derived using the Mueller matrix
transformation (MMT), which complements the MMPD by characterising
scattering and other structural tissue properties [38]. Both MMPD and MMT
approaches are widely used in the bio-polarimetry research for detailed
morphological analysis of biological tissues [18-21, 23]. The median value of
each parameter was used as the representative metric for each slide,
ensuring standardisation across samples regardless of the number of tissue
cores present and the size of the surface area analysed from each patient
[39, 40]. For consistency, all polarimetric parameters listed in the following
sections thus refer to their median values across all pixels within each slide,
unless otherwise specified.

The various derived polarimetric parameters offer biophysical insights into
tissue microstructure, with a particular emphasis on the organisation and
characteristics of birefringent structures, such as collagen [18-21]. For example,
using the Lu-Chipman decomposition, parameters such as depolarisation (4),
retardance (R), and diattenuation (D) were calculated, providing information
about tissue scattering, fibre-related birefringence, and absorption anisotropy,
respectively [18-21, 23, 37]. Additionally, the MMT parameters were employed
to quantify the anisotropic properties of the tissue, including fibre alignment
and birefringence [19, 20, 23, 38]. The 30 resultant polarimetric parameters
were derived following the methodology outlined in previous studies [18-24],
comprising 16 Mueller matrix elements, 8 MMPD, and 6 MMT metrics. A
comprehensive list of these parameters is provided in Fig. 3.
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Machine learning methods

The classification task at hand necessitates a supervised ML approach,
given the categorical nature of the problem (luminal A vs B). Feature
selection through relative feature importance was undertaken as a
preprocessing step to identify and select the most relevant features for
improving model performance and interpretability. Then several estab-
lished ML algorithms were considered, each offering distinct methodolo-
gical advantages and trade-offs [41]. In this study, we systematically
evaluated logistic regression (LR), linear discriminant analysis (LDA),
support vector machine (SVM), random forest (RF), and extreme gradient
boosting (XGBoost) to determine the optimal classifier for distinguishing
between luminal breast cancer subtypes.

LR is a widely used method for binary classification, modelling the
probability of an outcome using the logit function, which relates the log-
odds of the outcome to a linear combination of the input features [41].
LDA, an extension of this approach, seeks to maximise class separability by
identifying an optimal linear combination of features while assuming
normally distributed data with equal class covariances [41]. SVM, a
powerful kernel-based method, constructs a hyperplane that optimally
partitions classes in a high-dimensional feature space, effectively handling
complex decision boundaries [41]. RF, an ensemble-based approach,
aggregates multiple decision trees to enhance predictive stability and
mitigate overfitting, leveraging feature randomness to improve generali-
sability [41]. XGBoost, an advanced gradient boosting framework,
iteratively refines decision trees by minimising classification errors through
gradient descent, often achieving superior performance in structured
biomedical datasets [42, 43].

Each method contains specific assumptions and design characteristics
with varying applicability to the structure of the dataset used in this study.
LR and LDA are computationally efficient and interpretable, though their
assumptions may be limiting in datasets with non-linear boundaries or
mixed feature distributions [41]. In particular, the assumption of equal
covariances in LDA may not hold in the presence of heterogeneous clinical
and polarimetric variables [41]. SVM does not assume any specific feature
distribution and is flexible in modelling non-linear patterns, although its
performance can depend on kernel selection and hyperparameter tuning
[41]. Tree-based models such as RF and XGBoost are non-parametric, do
not require feature normalisation, and are robust to multicollinearity and
outliers. These properties make them applicable in settings with modest
sample sizes, categorical outcomes, and potentially correlated features.
However, these models are more complex and can be less transparent in
their decision-making processes [41-43].

Handling outliers

Outliers were retained in the analysis, as no discernible clinical or biological
rationale (e.g. age, ER/PR expression, lymph node status) justified their
exclusion. While outlier removal is often employed to optimise machine
learning model performance by refining decision boundaries and
mitigating noise, its indiscriminate application risks eliminating biologically
meaningful variability inherent in real-world clinical datasets [44].
Retaining these data ensures that the model is trained on a representative
distribution, capturing the full spectrum of patient heterogeneity rather
than overfitting to an artificially constrained dataset. Furthermore,
excluding such cases may inadvertently bias the model by omitting rare
but clinically significant phenotypes, ultimately compromising its gener-
alisability and translational utility [44, 45].

Dataset partitioning and model training

Given the relatively small dataset, a 70% (train+validation)/30% (test) split
ratio was implemented to optimise model learning capacity and general-
isation. This partitioning strategy aims to train the model on a sufficiently
large dataset while preserving an independent (not seen) test set for
robust performance evaluation. To prevent class imbalance from skewing
the model, stratified sampling was applied during data splitting, ensuring
that the proportion of luminal A and luminal B cases remained consistent
across all subsets [46].

To enhance model robustness and reduce the risk of overfitting, feature
selection was performed as a preprocessing step using relative feature
importance scores obtained from the random forest model [47]. RF was
chosen for this task due to its ability to handle non-linear relationships,
accommodate mixed feature types, and estimate variable importance
directly during model training [41, 47]. This method ranks features based
on how much they contribute to improving classification performance
across the ensemble of decision trees. While alternative approaches to

feature selection may yield somewhat different rankings, RF was selected
to reflect the structure of our dataset, which includes potentially
interacting polarimetric and clinical features [41, 47]. Subsequently, a
five-fold cross-validation strategy (five different training-validation set
combinations) was employed, whereby the 70% of the dataset was
repeatedly partitioned into training and validation folds. Stratified
sampling ensured class balance within each fold, and each sample
contributed to both training and validation phases. This approach helps
mitigate selection bias and provides a more reliable estimate of model
performance under limited sample size conditions [48, 49].

Before final model testing, a retraining step was also conducted, where
the best-performing model—selected based on training and validation
results—was retrained on the combined training and validation set before
being evaluated on the test (unseen data) set. This approach is widely used
in machine learning, particularly in clinical datasets with limited sample
sizes [50]. By incorporating additional (validation) data into the training
phase, this method enhances statistical power and improves model
generalisability without introducing data leakage, towards a more reliable
estimate of real-world performance [50, 511.

Performance evaluation

To rigorously quantify classification performance on unseen data, a 2 x 2
confusion matrix (true subtype vs predicted subtype) was constructed.
Standard classification metrics, including sensitivity, specificity, accuracy,
and the area under the receiver operating curve (AUROC), were computed
to provide a comprehensive evaluation of model effectiveness.

RESULTS

In this study, polarimetric parameters were analysed to character-
ise the interaction of polarised light with breast cancer biopsy
tissues, aiming to differentiate between luminal A and B subtypes.
A total of 30 parameters were examined, including the 16 Mueller
matrix elements and additional parameters derived from MMPD
and MMT. For demonstration, Fig. 2c, d presents parametric
images based on potentially important metrics of depolarisation,
diattenuation, and the M44 Mueller matrix element. The
depolarisation metric reflects cellularity and microstructural
heterogeneity, often associated with complex tissue architectures
[20, 21, 23]. Diattenuation provides insights into tissue anisotropy,
indicating the directional dependence of optical properties
[19, 20, 23]. The biophysical meaning of the M44 element is more
difficult to define explicitly, as the direct physical interpretation
of any individual Mueller matrix element (except M11) is
inherently ambiguous [18, 19, 52-54]. But overall, as seen in
Fig. 2¢, d, while polarimetric imaging of unstained breast biopsy
slides provides some interesting contrast, visual differentiation of
luminal subtypes remains challenging, necessitating quantitative
analysis to reveal subtle differences essential for subtype
classification.

To assess whether polarimetric features alone can differentiate
luminal A and B subtypes, or whether incorporating clinical
variables offers additional value, all extracted features were ranked
by importance using an RF classifier. As shown in Fig. 3, models
trained solely on 30 MMP parameters (green bars, left) were
compared to those trained on an extended set of 37 features that
included both polarimetric and clinical variables (red bars, right).
For subsequent model development, the top six features (marked
by asterisks in Fig. 3) were selected as the feature selection
preprocessing step. Interestingly, when examining the combined
feature set, the six highest-ranking features were evenly split
between MMP-derived parameters (median values of M41, M44,
and M33) and clinical variables (Nottingham grade from biopsy,
Nottingham grade from excision, and histologic type), suggesting
that both feature categories contribute relevant and non-
redundant information to the A vs B classification task.

To evaluate classification performance, five supervised learning
algorithms—LR, LDA, SVM, RF, and XGBoost—were trained and
validated using five-fold cross-validation. Model performance was
assessed via its accuracy, sensitivity, specificity, and AUROC. The
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Table 1.

Training + Validation

Model LR LDA SVM RF
Polarimetric features

Accuracy 62+ 10 62+ 11 67+ 10 68+ 12
Sensitivity 54+26 40+ 26 57+13 5718
Specificity 6717 7812 74+ 20 7621
AUROC 60+ 15 62+14 65+ 11 69+ 20
Polarimetric and clinical features

Accuracy 66+ 14 687 709 7913
Sensitivity 48 +27 53+24 33+9 679
Specificity 75+15 768 93+13 86+ 19
AUROC 75+10 7015 78+12 77+£18

Classification performance of five supervised learning algorithms for distinguishing luminal A and luminal B breast cancer subtypes.

Test

XGBoost RF RFretrained SVM SVMretrained
61+13 60 60 51 51

49+19 60 60 33 33

70+13 60 60 65 65

65+13 72 72 62 62

71+16 62 81 = =

57+8 38 75 = =

79+21 50 75 = =

68+18 74 86 = =

Cross-validation results (left block) are reported for two input feature sets: polarimetric features alone (N = 116, top rows; see Fig. 4a) and a combined set of
polarimetric + clinical features (N. = 68, bottom rows; see Fig. 5a). Each entry is the mean + standard deviation across folds for accuracy, sensitivity, specificity,
and AUROC. The right block lists the corresponding metrics on the independent test sets: models trained on polarimetric features were evaluated on n = 35
cases, whereas the RF model with polarimetric + clinical features was evaluated on n = 21 cases. ‘RFegrained’ @Nd ‘SVMetrained’ denote the RF and SVM refit on

the full training + validation data before testing.

results are summarised in Table 1 and visualised in Figs. 4 and 5,
with error bars representing performance variability across
validation folds.

When trained using only polarimetric features, the five
supervised learning algorithms exhibited broadly similar overall
performance, though they differed in some key classification
metrics (Fig. 4a; Table 1, top left section). LR and LDA both
achieved a mean accuracy of 62% but diverged in class-specific
performance. LDA yielded the highest specificity (78%) while
showing limited sensitivity (40%), suggesting a strong bias toward
correctly identifying luminal A cases but poor detection of luminal
B. LR achieved slightly more balanced performance (sensitivity
54%, specificity 67%), though with reduced overall discriminative
power.

SVM produced a higher mean accuracy (67%) and the highest
sensitivity (57%) among all models, indicating improved detection
of luminal B cases. However, this came with somewhat reduced
specificity (74%) and greater variability across cross-validation
folds, highlighting a trade-off between recall of the minority class
and model stability. XGBoost performed comparably in terms of
accuracy (61%), with balanced but moderate sensitivity (49%) and
specificity (70%), though its higher variance across folds indicated
reduced reliability.

RF demonstrated the most balanced and consistent perfor-
mance across all metrics, achieving a mean accuracy of 68%,
sensitivity of 57%, specificity of 76%, and AUROC of 69%, with
reasonably low inter-fold variability. While no single model
outperformed across all evaluation criteria, RF and SVM were
selected for subsequent evaluation on the independent test set:
RF for its balanced metric profile, and SVM because its accuracy,
sensitivity, specificity, and AUROC were comparable to those of RF.

Then the generalisability of the two top-performing models—
RF and SYM—was evaluated on an independent test set of unseen
patient data (n = 35). As shown in Fig. 4b, RF achieved an AUROC
of 0.72, outperforming SVM, which reached an AUROC of 0.62. RF
also demonstrated more balanced classification performance, with
60% accuracy, 60% sensitivity, and 60% specificity (Fig. 4c, Table 1).
In contrast, SVM showed reduced generalisation, particularly in
sensitivity (33%), despite slightly higher specificity (65%), resulting
in an overall lower accuracy of 51% (Fig. 4d, Table 1). Retraining
the RF and SVM models on the combined training + validation set
prior to testing left all test metrics unchanged, indicating that
predictive limits likely stem from the polarimetric feature set
rather than training sample size. Consistent with cross-validation
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trends, RF still outperformed SVM on accuracy, sensitivity,
specificity, and AUROC. Together, these findings suggest that
while polarimetric features capture microstructural information,
may be insufficient on their own for reliable subtype classification,
suggesting the potential benefit of incorporating clinical data to
improve model robustness.

Given the moderate performance of all models using polari-
metric features alone, we next evaluated whether incorporating
clinical variables could improve classification outcomes. As seen,
overall improvement was not evident across the five models
(Fig. 5a; Table 1, bottom left). LR and LDA showed moderate
classification accuracy (66% and 68%, respectively) but low
sensitivity (48% and 53%), reflecting a limited ability to identify
luminal B cases. SVM achieved the highest specificity (93%) but
exhibited poor sensitivity (33%), suggesting bias toward the
majority class. XGBoost achieved an accuracy of 71% and
sensitivity of 57%, representing an improvement over its
performance with polarimetric features alone, though these gains
were accompanied by higher variability across folds. This
variability suggests that XGBoost's performance was more
sensitive to the composition of the training data, which may limit
its reliability in small-sample settings.

In contrast, RF offered the most balanced performance across
metrics, with an accuracy of 79%, sensitivity of 67%, specificity of
86%, and AUROC of 77%. While other classifiers excelled in
isolated metrics—such as SVM in specificity or XGBoost in certain
folds—RF consistently performed well across all evaluation
criteria, supporting its selection as the final best-classification
model (Fig. 5a and Table 1).

The trained RF model was then applied to an independent test
set (n =21 patients). As anticipated, performance declined some-
what relative to cross-validation, with test accuracy, sensitivity,
and AUROC decreasing to 62%, 38%, and 74%, respectively
(Fig. 5b). This reduction is consistent with typical patterns
observed in small-cohort machine learning settings, where limited
training data can lead to overfitting and reduced generalisation.

To address generalisability, the best-performing RF model was
retrained on the full training and validation cohort (n=47) and
subsequently again evaluated on the test set (n=21). Notably,
although this retraining step was applied to a smaller subset (Nc = 68)
of the original dataset (N=116) (due to the limited availability of
clinical features), classification performance improved, yielding 81%
accuracy, 75% sensitivity, 75% specificity, and an AUROC of 86%
(Fig. 5b-d, Table 1). These gains likely reflect the incorporation of
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performance in terms of true and predicted luminal subtypes.

additional, complementary informative features, specifically clinical
biomarkers, into the model. Compared to models trained on the full
116 cases using polarimetric parameters only, the addition of clinical
variables in this smaller, clinically enriched cohort enabled better
separation of luminal subtypes. This highlights the importance of input
feature quality and relevance in driving model performance.

DISCUSSION

While molecular profiling methods are commonly used to
distinguish luminal A from luminal B subtypes, their routine use
has proven challenging due to cost, complexity and time delays
issues. Yet standard histopathological techniques alone are unable
to differentiate these subtypes due to the absence of distinct
morphological markers (Fig. 1). These challenges underscore the
need for quantitative approaches that are objective, rapid, cost-
effective, and readily implementable.

We thus evaluated whether label-free Mueller matrix polarime-
try performed on unstained slides, either alone or in combination
with clinical variables, could support the classification of luminal A
and B breast cancer subtypes using core biopsy specimens.
Models trained exclusively on polarimetric features achieved
modest classification performance. Among the five algorithms
tested, RF produced the most balanced cross-validation results
and demonstrated greater consistency on the independent test
set. However, performance remained modest, particularly in
identifying Luminal B tumours—reflected in lower sensitivity

scores, increased false negatives, and reduced AUROC. While
binary classification often involves trade-offs between class-
specific performance, favouring one class over the other can
have clinical consequences. Correct identification of luminal B
tumours, which are typically more aggressive and have different
treatment implications, carries greater diagnostic weight. A model
that identifies Luminal A well at the cost of consistently
misclassifying Luminal B offers limited practical value. These
findings suggest that although polarimetric imaging captures
useful structural optical contrast, it may not offer sufficient
discriminatory power on its own for reliable subtype classification
in breast biopsy samples.

Integration of clinical variables into the models led to improved
performance across all metrics, with RF achieving the highest test
set accuracy and AUROC, following retraining on the full training
and validation cohort. This improvement highlights the comple-
mentary nature of polarimetric and clinical data. The top-ranked
features included both types of input—specifically, three polari-
metric parameters (median values of M41, M44, and M33) and
three clinical variables (biopsy- and excision-derived Nottingham
grades and histologic type)—indicating that both domains
contribute non-redundant and likely independent information.

To reduce dimensionality, we ranked features by random-forest
importance using the training data only and retained the six
highest-scoring variables for all subsequent classifiers. Because
selection was confined to the training set, no information leaked
into validation or test evaluations [55]. We acknowledge that this
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filter-based approach can favour tree-based models—such as
random forest itself—because the ranking reflects the relation-
ships that those models exploit most effectively [56]. Nonetheless,
with a dataset of only 116 cases, it provided a pragmatic, model-
independent (of the downstream classifiers) starting point for this
proof-of-concept study; more elaborate selection schemes can be
unstable when sample sizes are this small [57]. Future work,
utilising larger patient cohorts, will explore permutation-based or
model-specific feature-selection strategies to determine whether
these approaches improve performance [58].

The selected Mueller matrix parameters are associated with
different aspects of tissue optical properties. M44 and M33 have
been previously linked to depolarisation and tissue heterogeneity,
while M41 is related to linear retardance and may reflect structural
anisotropy [18, 19]. Although the direct physical interpretation of
individual Mueller matrix elements is non-trivial, prior studies
suggest that these features can capture microstructural differ-
ences such as collagen content, fibre alignment, and extracellular
matrix organisation [18, 19, 52-54]. In our dataset, luminal B
tumours tended to exhibit lower M44 values than luminal A,
possibly reflecting reduced collagen alignment or increased
matrix disruption. These findings are consistent with previous
reports that associate luminal B tumours with greater architectural
disorganisation and higher proliferative activity [5, 6, 10].

Clinical variables also contributed meaningfully to model
performance. Both biopsy and excision Nottingham grades ranked
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among the top features, which may reflect the complementary
nature of these histological assessments. Biopsy samples typically
capture a limited, focal region of the tumour, potentially under-
estimating overall grade due to sampling variability. In contrast,
excision specimens provide a broader and more representative
view of tumour architecture. The presence of both as informative
features suggests that they offer non-redundant information, likely
capturing different aspects of tumour biology that are relevant for
subtype differentiation. Histologic type also emerged as another
important feature. Although it does not define molecular subtype,
certain histological patterns are more frequently associated with
specific molecular profiles. For example, invasive lobular carcino-
mas, typically oestrogen receptor-positive with lower proliferation
indices, are more often luminal A, whereas luminal B tumours are
generally higher grade and more proliferative [5, 11, 59]. These
associations may explain why histologic type provided additional
predictive value in the combined model.

The present analysis combined polarimetric biomarkers with all
clinically available data (including variables recorded both at initial
diagnosis and after surgical resection), with the intend to gauge
maximal predictive potential. In routine practice, however, only
clinical information obtainable at the diagnostic stage should be
used to discriminate luminal A from luminal B, as this is the
timeframe when treatment decisions are made. Accordingly,
although our results indicate that polarimetry combined with
clinical features can aid subtype classification, they remain
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exploratory and require external validation on larger cohorts that
rely solely on pre-operative clinical variables.

In parallel, we are also exploring the potential of polarimetric
biomarkers to predict sentinel lymph node biopsy (SLNB)
positivity or negativity—another essential issue in breast cancer
staging and therapeutic decision-making [60]. The ability to assess
SLNB status non-invasively through core biopsies could reduce the
need for more extensive surgical procedures, thereby streamlining
treatment planning in early-stage breast cancer. If polarimetric
analysis can reliably indicate lymph node involvement, it could
support more intelligent decisions regarding adjuvant therapies
while minimising unnecessary interventions.

In conclusion, this study provides proof-of-concept demonstra-
tion that core biopsies could be used to obtain quantitative
polarimetric biomarkers towards distinguishing between luminal A
and B breast cancer subtypes. Importantly, this approach involves
no subjective pathology involvement in defining specific ROIs for
analysis. Clinically, a non-expensive, relatively simple, rapid, and
easily implementable tool such as MMP that derives prognostic
information from core biopsy samples would be highly desirable to
provide early, minimally invasive insights to help inform robust
treatment decisions prior to surgery or neoadjuvant therapy.
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