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Bridging the macro to micro 
resolution gap with angiographic 
optical coherence tomography 
and dynamic contrast enhanced 
MRI
W. Jeffrey Zabel1,5*, Nader Allam1,5, Warren D. Foltz2,3, Costel Flueraru4, Edward Taylor2,3 & 
I. Alex Vitkin1,2,3

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is emerging as a valuable tool 
for non-invasive volumetric monitoring of the tumor vascular status and its therapeutic response. 
However, clinical utility of DCE-MRI is challenged by uncertainty in its ability to quantify the tumor 
microvasculature ( µm scale) given its relatively poor spatial resolution (mm scale at best). To address 
this challenge, we directly compared DCE-MRI parameter maps with co-registered micron-scale-
resolution speckle variance optical coherence tomography (svOCT) microvascular images in a window 
chamber tumor mouse model. Both semi and fully quantitative (Toft’s model) DCE-MRI metrics were 
tested for correlation with microvascular svOCT biomarkers. svOCT’s derived vascular volume fraction 
(VVF) and the mean distance to nearest vessel ( DNV ) metrics were correlated with DCE-MRI vascular 
biomarkers such as time to peak contrast enhancement ( r = −0.81 and 0.83 respectively, P < 0.0001 
for both), the area under the gadolinium-time concentration curve ( r = 0.50 and −0.48 respectively, 
P < 0.0001 for both) and k

trans
 ( r = 0.64 and −0.61 respectively, P < 0.0001 for both). Several other 

correlated micro–macro vascular metric pairs were also noted. The microvascular insights afforded by 
svOCT may help improve the clinical utility of DCE-MRI for tissue functional status assessment and 
therapeutic response monitoring applications.

Tumor cells require oxygen and nutrients to survive, which are supplied by the tumor vascular network. This 
network is abnormal and malformed with leaky and tortuous vessels in comparison to normal tissue. The mal-
formed nature of the tumor vasculature often results in poorly oxygenated or hypoxic regions which are more 
likely to metastasize and are also more resistant to common cancer treatments such as radiation therapy (RT) 
and chemotherapy. Such characteristics of the tumor vasculature are typically highly heterogenous spatially (on 
the scale of ~ 100 µm or less)1 and temporally2.

Given the strong dependence of tumor cell survival and treatment resistance on the vascular network, there 
has been a significant effort to develop new cancer treatments that target the tumor vasculature. For example, in 
the radiation oncology field, clinicians have explored the administration of a vascular endothelial growth factor 
(VEGF) blockade with the goal of ‘normalizing’ the vasculature to improve oxygen and nutrient delivery before 
RT3, or administration of vascular disrupting agents that block angiogenesis after RT to starve the tumor of nutri-
ents and oxygen4. Multiple studies also suggest that hypofractionated RT (at doses > 8–10 Gy/fraction) depends 
on microvascular ablation in addition to tumor cellular DNA damage as part of its mechanism of action5–7.

Despite the promising early results of these therapies, optimal scheduling and dosages for concurrent admin-
istration with conventional treatment modalities (such as chemotherapy and radiation therapy) has yet to be 
realized3,8,9. Non-invasive imaging of the detailed structure and function of the tumor vasculature may facilitate 
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therapy personalization during the treatment planning stage, rapid adaptation throughout the course of treat-
ment, and prognosis post-treatment3,8,9.

Optical microangiography plays an important role in preclinical6,10–14 and selected clinical15,16 studies of the 
vasculature. Speckle variance optical coherence tomography (svOCT) is a functional extension of conventional 
structural OCT that allows for high resolution imaging of tumor microvasculature10. svOCT has advantages 
over many other intravital microscopy techniques in that it does not require exogenous contrast agents, can 
image the vasculature in 3D to a depth of 1–3 mm, and is relatively cheap and fast. Most importantly, svOCT’s 
vascular contrast is excellent and its resolution affords capillary imaging. svOCT has been used in studies to 
quantify differences between normal and tumor vasculature11 as well as to study the response of the vasculature 
to radiation6,15 and photodynamic therapies16. Despite its excellent ability to visualize and quantify the volu-
metric maps of tissue blood vessels down to the capillary level and selected therapy-monitoring applications in 
patients15,16, clinical implementation of this technology in a wide variety of anatomical sites is hindered by its 
shallow penetration depth17. An alternate imaging modality with deep-tissue vascular imaging capabilities must 
be considered for wider clinical implementation.

Magnetic resonance imaging (MRI) is already prevalent in cancer care, given its excellent soft tissue contrast 
and ability for large field-of-view imaging in 3D with excellent penetration depth and avoidance of harmful ion-
izing radiation. Cancer therapies can in principle be monitored longitudinally via MRI biomarkers that report on 
tumor treatment response, including using perfusion-sensitive techniques such as dynamic contrast enhanced 
(DCE) approaches18–20. DCE-MRI involves the bolus administration of a gadolinium (Gd) contrast agent fol-
lowed by a time series imaging of its tissue accumulation and clearance. Analysis of Gd contrast enhancement 
kinetics can offer insight into the function, and perhaps underlying structure of the vasculature13,14,21–24, and its 
response to vascular targeting therapies20.

Despite the promise of DCE-MRI for predicting and monitoring cancer treatment response, questions have 
been raised on its ability to accurately assess and quantify the tumor microvasculature ( µm scale) given the 
relatively coarse spatial resolution of clinical MRI scanners (mm scale at best)17. To address this concern, pre-
liminary studies have compared DCE-MRI parameters with histology21–24 and intravital microscopy13,14, and have 
found some correlations between these modalities. However, both histological comparisons21–24 and intravital 
microscopy studies13,14 suffer from poor co-registration with MR images and are limited by their simple 2D 
analysis of the vascular network. Here we attempt to fully analyze and address the ‘macro-to-micro resolution 
gap’ by directly correlating high resolution 3D in-vivo volumetric ‘ground truth’ svOCT images of the tumor 
vasculature with semi-quantitative and quantitative vascular metrics derived from lower resolution MR-contrast 
enhancement time series imaging in the same animals. Through these correlations, we hope to determine whether 
microvascular information can be gleaned from coarser-resolution DCE-MRI datasets, thereby increasing its 
available information content and potentially enhancing its clinical value.

Materials and methods
Animal model and window chamber design.  All animal procedures were performed in accordance 
with appropriate standards under a protocol approved by the University Health Network Institutional Ani-
mal Care and Use Committee in Toronto, Canada (AUP #3256). The reporting in this manuscript follows the 
ARRIVE guidelines. The radioresistant and immunocompromised NOD-Rag1nullIL2r γ null (NRG) mouse strain 
was chosen for this study. Seven mice were subcutaneously inoculated with ~ 105 human pancreatic cancer cells 
(BxPC-3 cell line) transfected with fluorescent DsRed to report cellular viability. Two mice with no tumor (bare 
skin only) were used as ‘normal’ vasculature controls. MR compatible window chambers were designed using 
Autodesk Fusion 360 CAD software version 2.0.12160 (Autodesk Inc., San Rafael, CA, USA) and 3D printed 
using a carbon fiber and nylon blend thermoplastic (Filaments Inc, Toronto, ON, CA). The window chamber was 
surgically sutured to the dorsal skin folds (Fig. 1) when the tumor reached ~ 3–5 mm in diameter (~ 3–4 weeks 
post inoculation). Window chamber installation was intentionally performed after tumor inoculation so that the 
initial tumor growth dynamics and its microvascular development were not altered25. The window chambers had 
eight ‘divots’ on the top surface for placement of fiducial markers (Tear-Gel, Bausch & Lomb, Laval, QC, CA) to 
facilitate MRI to svOCT image co-registration (Fig. 1A, orange circles). For both optical and MR imaging, mice 
were anesthetized using 5% isoflurane and maintained with 2% isoflurane via a nose cone mask.

Optical imaging: experimental setup.  OCT images were acquired using a previously described swept 
source OCT system based on a quadrature interferometer26 allowing for acquisition of the full complex inter-
ferometric signal to suppress the complex conjugate artifact. The sample arm of the quadrature interferometer 
contained a semiconductor optical amplifier (SOA) with a gain of 35 dB to boost the back reflected signal from 
the tissue. The SOA had the same center wavelength and bandwidth as the laser source (1,300 nm and 105 nm 
FWHM, respectively). Polarization controllers were used to minimize the differences between the shape of nor-
malized light spectra in the reference arm and after the SOA. The A-scan rate of the OCT imager was 20 kHz. 
Two detector outputs were digitized using a data acquisition card with 16-bit resolution and sampling rate of 250 
MS/s. The resultant axial and lateral resolutions in air were 8 µm and 15 µm , respectively.

OCT volumetric images were acquired with a 6× 6 mm2 field of view (FOV), by stitching together laterally 
adjacent 3× 6 mm2 scans. The subdivided acquisition of the FOV reduces bulk tissue motion artifacts by decreas-
ing the amplitude of motion of the OCT’s scanning-mirror galvanometer, thus reducing the inter-frame time 
(the time between scan repetitions at a given location). Each B-scan consisted of 400 A-scans and was performed 
8 times per location (25 ms apart) to enable speckle variance processing10. This repeat sequence and temporal 
spacing were previously determined to result in sufficiently high speckle variance SNR and fast decorrelation 
in blood microvasculature compared to other physiological motions of surrounding tissue27. Hence enhanced 
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contrast for image voxels containing blood is obtained via interframe speckle variance calculations. Tumor cell 
brightfield (Fig. 2A) and DsRed fluorescence (Fig. 2B) imaging were also performed for localization and viability 
assessment, respectively, using an epifluorescence microscope (Leica Microsystems MZ FLIII, Richmond Hill, 
ON, CA).

Optical imaging: speckle variance processing and microvascular metric extraction.  OCT data 
were analyzed using in-house built software written in MATLAB R2020A (MathWorks, Inc., Natick, MA, USA). 
Speckle variance processing was used to obtain 3D images of the tumor microvasculature10. The interframe 
intensity variance SVxyz across N consecutive structural OCT intensity scans Ixyzn  (where xyz are the voxel 
coordinates) was calculated to obtain 3D images with enhanced vascular contrast (N = 8 for these experiments):

A resultant representative 2D average intensity projection image of the microvasculature is shown in Fig. 2C. 
To facilitate vascular quantification, vessels were segmented from the svOCT datasets using the method proposed 
by Conroy et al11 (Fig. 2D and E).

Vascular quantification analysis was performed within manually drawn tumor contours. These were created 
by first co-registering the DsRed fluorescence and brightfield images with the svOCT vascular volumes using 
affine transforms guided by vascular landmarks, and thresholding the fluorescence images to create a 2D tumor 
contour. The 2D fluorescence tumor contour was further defined by performing manual, 3D tissue surface mask-
ing using the structural OCT scans. The 3D tissue surface mask was combined with a cylindrical projection of 
the 2D fluorescence tumor contour to a depth of 1 mm from the most superficial tissue layer. The combination 
of the 2D fluorescence contour and 3D tissue surface mask yielded the final 3D tumor contour. For the healthy 
mouse, vascular analysis was restricted to 3× 3mm2 region of interest in the middle of the window chamber, 
similar to the 3D spatial extent of most examined tumors.

Two quantitative vascular microarchitecture metrics were then extracted from the segmented svOCT datasets. 
The vascular volume fraction (VVF) was defined as the proportion of vessels within the analyzed volume. A 3D 
Euclidean distance transform was then applied to the entire segmented vascular volume to obtain a histogram 
of the distances to the nearest vessel (DNV). The mean distance to the nearest vessel ( DNV ) was then defined 
as the average value of the DNV histogram within the analyzed volume.

MRI: experimental setup.  Same animals were imaged on a 7T preclinical MRI system (Biospec 70/30 
USR, Bruker Corporation, Ettlingen, BW, DE), equipped with the B-GA12 gradient coil insert and 7.2 cm inner 
diameter quadrature cylindrical RF coil.  Each mouse was anesthetized and positioned on a slider bed with 
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Figure 1.   MR-compatible plastic window chamber mouse model. 3D rendering of top (A) and bottom (B) 
surface of MR compatible plastic window chamber designed in Autodesk Fusion 360 CAD software version 
2.0.12160 (Autodesk Inc., San Rafael, CA, USA). Divots for fiducial marker placement are marked by the orange 
circles in (A). (C) Plastic window chamber on a tumor bearing mouse.
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inlaid tubes circulating water warmed to 38 ◦C for temperature regulation. A respiratory pillow (SA Instru-
ments, Stony Brook, NY, USA) was positioned underneath the diaphragm for respiratory monitoring, main-
tained at 30± 5 breaths per minute. A 3D printed thermoplastic polyurethane window chamber immobilization 
device reduced respiratory movement and aligned the window chamber plane along the axis of the MRI bore.

Imaging consisted of orthogonal 2D T2-weighted acquisitions to guide localization of the window chamber 
in the slice plane, followed by quantitative T1 mapping and DCE imaging. All acquisitions shared matching 
geometric features ( 32× 32 mm field-of-view with 64× 64 matrix for 0.5× 0.5 mm in-plane resolution; 5 con-
tiguous imaging slices, with only the top two subsequently analyzed for correlation with svOCT; 0.5 mm slice 
thickness). T2-weighted images (Fig. 3A) were acquired using 2D-RARE (echo time TE = 25 ms; repetition 
time TR = 2500 ms; 25 s per orientation). T1 maps were generated using 2D-RARE images acquired at variable 
repetition time (TE = 7 ms; TR = 350, 500, 750, 1000, 1500, 2500, and 4000 ms; 8 min 28 s). Dynamic contrast 
enhancement was monitored using a time-series of 2D spin-echo RARE images (TE = 8.1 ms; TR = 200 ms; flip 
angle = 90°; temporal resolution = 12.8 s; 188 repetitions; total monitoring time = 40 min 6 s). 0.75 mmol/kg body 
weight Gadovist (Gd-D03A-Butrol, Bayer AG, Leverkusen, NRW, DE) was injected over 10 s via tail vein after 
completion of five image repetitions using an automated MR-compatible syringe pump (PHD 2000, Harvard 
Apparatus, Holliston, MA, USA).

Dynamic contrast enhanced MRI: data analysis.  For DCE-MRI analysis, the raw MRI signal enhance-
ment was converted to gadolinium concentrations for each imaging timepoint ( Ct ) using a standard equation for 
MRI contrast enhancement:

where T1,0 is the longitudinal relaxation time assessed via T1 mapping, and r = 4.2s−1mM−1 is the relaxivity 
of Gadovist at 7T28. The effective T1 was calculated by solving the spin-echo signal equation at each timepoint:

where k is a scaling constant and ρ is the proton density. Assuming that T2 ≫ TE , the effective T1 was calculated 
by dividing the signal intensity at time t  by the baseline signal intensity leading to k and ρ cancelling out.
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Figure 2.   Brightfield, fluorescence, and svOCT imaging of a well vascularized tumor. (A) Brightfield image of 
window chamber with white dotted line indicating the field of view of the svOCT image. (B) Corresponding 
DsRed fluorescence image to indicate tumor cell viability. (C) svOCT average intensity projection with tumor 
boundary delineated by the blue line. (D) Segmented depth encoded vasculature within blue tumor boundary 
line. (E) 3D rendering of segmented tumor vasculature. (C)–(E) were generated using MATLAB R2020A 
software (MathWorks, Inc., Natick, MA, USA).
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Semi-quantitative analysis was performed on the resulting Gd time-concentration curves for each voxel29. 
The maximum enhancement (ME) was the maximum Gd concentration reached by the given voxel over the 
DCE-MRI time course. The time-to-peak Gd concentration (TTP) was defined as the time from initial contrast 
agent arrival in the voxel to the time at which maximum Gd concentration was reached. The wash-in rate (WIR) 
was calculated as the slope of the line connecting the point of initial contrast agent arrival in the voxel to the 
point of maximum Gd concentration. The area under the curve (AUC) was calculated over 15 min from initial 
contrast agent arrival in the voxel.

To progress beyond the empirical concentration curve analysis above, a variety of compartmental models 
have been proposed in the medical imaging community that offer more biophysical insight through the model 
fitting parameters. In this context, we performed a non-linear least-squares fitting of the Toft’s model30 to the Gd 
time-concentration curves for each voxel. This approach allowed for direct estimation of ktrans which is the rate 
of Gd extravasation from the intravascular to the extravascular extracellular space (EES). The fractional volume 
of the EES ( ve ) was also calculated by fitting of the Toft’s model, expressed as

where Ct is the Gd concentration at time t  , and Cp is the concentration of Gd in the blood plasma (arterial input 
function, AIF)30. A biexponential population-based AIF for mice proposed by Benjaminsen et al21 was used,

The constants in this equation were A0 = 0.75mmol/kg , a1 = 8.5kg/L , b1 = 4.8min−1 , a2 = 45kg/L , and 
b2 = 0.06min−1 as measured previously by Benjaminsen et al21. The rate constant for Gd moving from the EES 
to the intravascular space ( kep ) was determined using Eq. (6)30.

(4)Ct(t) = ktrans

∫ t

0
Cp(τ )exp

[

−
ktrans

ve
(t − τ)

]
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(5)Cp(t) = A0(a1e
−b1t + a2e

−b2t)

(6)kep =
ktrans
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Figure 3.   Co-registered macro DCE-MRI to micro svOCT vascular correlations. (A) T2-weighted structural 
MRI scan of the window chamber with tumor delineated by the red contour. (B) ktrans parameter map of the 
tumor, averaged over two depth slices (total depth of 1 mm to correspond with svOCT’s imaging penetration), 
in units of min−1 indicated by the colour bar. (C) svOCT segmented depth-encoded vasculature coregistered to 
(B). The grey dotted line in (B) and (C) shows one position of the 1mm3 sliding window VOI with numbered 
edges that correspond to the number locations in (D) and (E). The various semi-quantitative and quantitative 
MR vascular metrics in the resulting DCE-MRI voxels (8 ktrans voxels in this example) (D) are directly compared 
to microvascular biomarkers derived from the corresponding svOCT 3D microvascular map (E). The VOI 
then slides throughout the delineated tumor contour, with such analysis repeated at all positions. (B)–(E) were 
generated using MATLAB R2020A software (MathWorks, Inc., Natick, MA, USA).
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OCT‑MRI correlations.  MRI parameter maps were co-registered to the segmented svOCT vascular vol-
umes using fiducial markers attached to the window chamber (Fig. 1A). Three different “sliding window” VOI 
sizes (lateral × lateral × axial—0.5× 0.5× 1mm3, 1mm3, 1.5× 1.5× 1mm3 ) were used to facilitate intermodal-
ity spatial correlations between the two co-registered datasets (Fig. 3B and C). The sliding window VOI was 
displaced in increments of 0.5mm , corresponding to the size of the DCE-MRI voxels. Intermodality correlations 
were only performed if at least 75% of the sliding window VOI was within the manually drawn tumor contour 
to reduce signal from ‘healthy’ tissue surrounding the tumor. For each position of the sliding window VOI, the 
average value of the DCE-MRI parameter map voxels was calculated (Fig. 3B and D) and directly compared with 
the VVF and DNV calculated within the same VOI on the segmented svOCT dataset (Fig. 3C and E).

Statistical analysis.  All statistical analysis was performed in MATLAB R2020A (MathWorks, Inc., Natick, 
MA, USA). For intramodality comparison between normal and tumor tissue, a two-tailed Wilcoxon rank sum 
test was used. P < 0.05 level was selected to indicate a statistically significant difference between the two groups.

To assess the strength of svOCT and DCE-MRI intermodality correlations, the DCE-MRI metrics for each 
position of the sliding window VOI were plotted against the corresponding svOCT measurements for the VOI. 
The Spearman’s correlation coefficient ( r ) was used to assess the strength of intermodality correlations. P < 0.05 
was considered statistically significant. Spearman correlation coefficients were reported and interpreted accord-
ing to recent guidelines31.

Results
Healthy vs. tumor vasculature: quantification by svOCT and DCE‑MRI.  To validate our individual 
svOCT and MRI systems and compare our results with other studies, we performed an initial comparison of 
healthy and tumor tissue. Analysis of tumor-bearing and healthy mice was performed using a 1 mm3 sliding 
window VOI (see supplementary information Table S1 and Table S2 for results using the 0.5× 0.5× 1mm3 and 
1.5× 1.5× 1mm3 VOI sizes respectively). Table 1 shows the average ± standard deviation values for the svOCT 
and DCE-MRI vascular metrics in tumor-bearing and healthy bare skin mice. n = 7 tumor bearing mice were 
included in the analysis. n = 2 healthy bare skin mice were used for calculation of the svOCT-derived metrics. 
n = 1 healthy bare skin mouse was used to derive the DCE-MRI metrics since MR imaging of the other healthy 
mouse was not successful due to the presence of exudate between the tissue and the glass of the window cham-
ber, leading to partial volume artifacts. Average values and standard deviations were calculated based on the 
measurements from all positions of the sliding window VOI across all tumor-bearing or healthy mice.

Examining the svOCT metrics first, tumor bearing mice had a much lower vascular volume fraction (VVF) 
than healthy mice, indicating impaired vascular development consistent with the literature11. The VVF metric 
was measured in this analysis because it is useful, straightforward to calculate and widely cited6,8,11,20–24, thus 
also facilitating comparison to other studies. However, the 3D imaging capabilities of OCT enables derivation 
of additional metrics of potential biophysical utility, such as for example the mean distance to the nearest vessel 
( DNV ). This may prove useful for monitoring the ability of the vascular network to deliver oxygen and nutri-
ents to the surrounding cells32–34. DNV has direct linkages to tumor cell hypoxia with regions >100− 150µm 
(diffusion distance of oxygen) typically being (chronically) hypoxic32,33. The aggressive growth of tumor cells 
often leads to the formation of large avascular regions and thus a decrease in DNV may also be associated with 
vascular normalization34,35. Not surprisingly, we found lower VVF and higher DNV in tumor bearing mice 
than in normal controls (Table 1, top rows). These both indicate a decrease in the ability for the vasculature to 
deliver oxygen and nutrients to the surrounding cells, as well as the increased likelihood of hypoxic regions in 
the tumor-bearing mice.

A statistically significant difference between healthy and tumor tissue was found for all semi-quantitative 
DCE-MRI metrics (Table 1, middle rows). The variation in semi-quantitative DCE-MRI metrics can be best 
explained by Fig. 4 which shows the svOCT vascular maps and corresponding DCE-MRI contrast enhance-
ment curves for a healthy mouse (Fig. 4A and B) and tumor bearing mouse (Fig. 4C and D). The healthy mouse 
exhibited a high wash in rate, earlier TTP, larger ME, and larger AUC in comparison to tumor bearing mice. This 
rapid and early enhancement with a high ME is indicative of well perfused tissue with a high vascularity36,37. On 
the other hand, tumor bearing mice had a shallower wash in slope along with decreased ME and a longer TTP 
indicating decreased perfusion compared to healthy mice36,37.

The Toft’s model fit to the Gd time concentration curves are shown as the red line in Fig. 4B and D. ktrans was 
higher in healthy mice than in tumor-bearing mice. ktrans is dependent on tissue blood flow, vascular perme-
ability, and capillary surface area30. Therefore, the larger ktrans values in healthy mice may be attributed to the 
increased blood flow and vascular surface area in the healthy mice. This finding must be interpreted carefully 
however, since tumor vasculature is inherently ‘leaky’ which could contribute to higher ktrans values in the tumor 
tissue in comparison to healthy tissue depending on the tumor type. ve was not different between healthy and 
tumor-bearing mice indicating that the cell density was similar in healthy and tumor tissue. kep showed the same 
trend as ktrans ; kep was larger in healthy tissue compared to tumor tissue as expected since it is directly related 
to ktrans by Eq. (6).

Overall, comparison of healthy and tumor tissue showed significant differences in microvascular structure 
(as shown by svOCT) as well as differences observed on DCE-MRI contrast enhancement curve shape and fully 
quantitative tissue parameters. The delayed contrast enhancement with shallower wash in rate and decreased 
maximum enhancement is consistent with impaired vascular development in tumors compared to healthy con-
trols. Fully quantitative metrics displayed significant differences in ktrans values between healthy and tumor tissue, 
however the influence of vascular permeability (tumor leakiness) may have confounding effects.
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Micro svOCT to macro DCE‑MRI vascular comparisons.  To determine which DCE-MRI macromet-
rics may offer the most insight into the underlying tissue microvasculature as reported by svOCT, a 1 mm3 slid-
ing window VOI (see Fig. 3) was used to quantify intermodality correlations (see supplementary information 
Table S3 and Table S4 for results using the 0.5× 0.5× 1mm3 and 1.5× 1.5× 1mm3 VOI sizes respectively). The 
results are summarized in Table 2, for both the healthy control (n = 1) and tumor-bearing (n = 7) mice.

Firstly, the magnitude of Spearman correlation coefficients between DCE-MRI metrics and svOCT metrics 
(VVF and DNV ) were essentially identical in magnitude and of opposite sign. For example, the Spearman cor-
relation coefficient between kep and VVF was 0.71 , and for kep  and DNV it was −0.70 . This implies that VVF and 
DNV may in fact not be independent metrics of vascular microarchitecture. To check this, we plotted DNV vs. 
VVF on a log–log plot (supplementary information Fig. S1). Linear regression analysis showed that VVF and 
DNV were highly (anti)correlated ( R2 = 0.88 ). The slope of the best fit line on the log–log plot was determined 
to be −0.96 indicating that:

(7)VVF ∝ DNV
−0.96

Table 1.   Healthy vs. tumor tissue quantification by svOCT and DCE-MRI.

Tumor Healthy P-value

svOCT Vascular Metrics
Vascular Volume Fraction, VVF 0.05± 0.04 0.23± 0.06 < 0.0001

Mean Distance to Nearest Vessel, DNV [ µm] 200± 160 26± 5 < 0.0001

DCE-MRI Semi-Quantitative Metrics

Area Under the Curve, AUC [mM • min] 3.91± 1.65 6.77± 1.63 < 0.0001

Maximum Enhancement, ME [mM] 0.38± 0.14 0.56± 0.14 < 0.0001

Time to Peak, TTP [ min] 14.83± 5.77 7.79± 1.29 < 0.0001

Wash in Rate, WIR [ 10−2 mM/min] 3.49± 1.82 7.85± 2.46 < 0.0001

DCE-MRI Fully-Quantitative Metrics

Volume Transfer Constant, ktrans [ min−1] 0.03± 0.02 0.11± 0.05 < 0.0001

Fractional Volume of EES,ve 0.26± 0.10 0.26± 0.07 0.63

Rate Constant from EES to Intravascular Space, kep 
[ min−1] 0.16± 0.16 0.42± 0.16 < 0.0001

Figure 4.   Healthy vs. tumor tissue quantification by svOCT and DCE-MRI. Significant differences in the 
microvasculature and corresponding DCE-MRI concentration–time curves were observed when comparing 
healthy and tumor tissue. (A) segmented depth-encoded svOCT microvascular map of healthy (bare skin) 
mouse and corresponding DCE-MRI Gd time concentration curve (B). (C) and (D) present analogous results 
for a tumor-bearing mouse. Gd time concentration curves and svOCT vascular metrics were calculated within 
a 1 mm3 volume of interest (blue dotted line) shown in (A) and (C). The solid blue line in (C) shows the tumor 
contour and the red line in (B) and (D) are the Toft’s model fits to the data. (A) and (C) were generated using 
MATLAB R2020A software (MathWorks, Inc., Natick, MA, USA).
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This makes sense, in that increasing vascular content (large VVF) implies decreasing intervascular spaces 
(small DNV).

Examining microvascular svOCT correlations with the DCE-MRI fully-quantitative parameters first, moder-
ate correlations were noted for ktrans with VVF and DNV ( r = 0.64 and −0.61 respectively, P < 0.0001 for both) 
(Fig. 5A and B). Correlations between ktrans and VVF are consistent with other window chamber and histology-
based studies that compare vascular density to ktrans13,14,21,24. This positive correlation is expected since ktrans is 
dependent on tissue blood flow, vascular permeability, and capillary surface area30. Therefore, the positive cor-
relation with VVF (and negative correlation with DNV ) can likely be attributed to the increase in tissue blood 
flow and/or vascular surface area as VVF increases (and DNV decreases).

A negligible correlation was found for ve with VVF and DNV ( r = −0.21,P = 0.0148 and r = 0.26,P = 0.0023 
respectively) which is consistent with histological studies that found no relationship with mean vascular density 
and ve24. kep was highly correlated with VVF and DNV ( r = 0.71 and −0.70 respectively, P < 0.0001 for both) 
however this high correlation may be attributed to the ktrans parameter since kep is directly related to ktrans by 
Eq. (6).

Moving on to microvascular svOCT correlations with the DCE-MRI semi-quantitative parameters, a high cor-
relation was found for TTP with VVF and DNV ( r = −0.81 and 0.83 respectively, P < 0.0001 for both) (Fig. 5C 
and D). This negative relationship between TTP and VVF has also been identified in some previous histology 

Figure 5.   Notable ‘macro-to-micro’ pairs. (A) and (B) are correlation plots for MR’s ktrans metric with svOCT-
derived microvascular biomarkers VVF and DNV respectively. (C) and (D) show analogous results for MR’s 
TTP metric. Each point represents the values obtained from the co-registered DCE-MRI and svOCT datasets 
for a single position of the 1mm3 sliding window VOI. r values = Spearman’s correlation coefficient. Open and 
solid symbols = healthy (n = 1) and tumor-bearing (n = 7) mice, respectively.

Table 2.   Spearman correlation coefficients for svOCT and DCE-MRI comparisons.

DCE-MRI: Semi-Quantitative Metrics
DCE-MRI: Fully-Quantitative 
(Toft’s Model) Metrics

AUC​ TTP WIR ME ktrans ve kep

svOCT: Vascular Volume Fraction (VVF)
r 0.50 − 0.81 0.59 0.28 0.64 − 0.21 0.71

P-value < 0.0001 < 0.0001 < 0.0001 0.0010 < 0.0001 0.0148 < 0.0001

svOCT: Mean Distance to Nearest Vessel ( DNV)
r − 0.48 0.83 − 0.57 − 0.26 − 0.61 0.26 − 0.70

P-value < 0.0001 < 0.0001 < 0.0001 0.0024 < 0.0001 0.0023 < 0.0001
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studies22,23. A moderate correlation was found for WIR with VVF and DNV ( r = 0.59 and −0.57 respectively, 
P < 0.0001 for both). However, the correlation of WIR with svOCT microvascular metrics must be interpreted 
carefully. WIR is directly related to TTP and ME by:

Note that the numerator in Eq. (8) is ME since the baseline Gd concentration is ~ 0. A negligible correla-
tion between ME with VVF and DNV ( r = 0.28,P = 0.0010; r = −0.26,P = 0.0024 respectively) was noted. 
Therefore, the moderate correlation with WIR and svOCT microvascular parameters may likely be attributed 
to the TTP metric.

Interestingly, low to moderate correlations were noted for the semi-quantitative MRI metric, AUC ( r = 0.50 
and −0.48 respectively, P < 0.0001 for both). Many prior studies have identified a high correlation between AUC 
and ktrans38,39, which may explain these findings. Changing the time over which AUC is integrated over may also 
lead to improved correlations with svOCT microvascular metrics.

Discussion
The 3D high resolution imaging capabilities of svOCT allowed for accurate vascular microarchitecture metric 
extraction, and the subsequent co-registration with DCE-MRI time series datasets allowed for spatial correla-
tion analysis between the two modalities in same live animals. The correlations between TTP, ktrans , and AUC, if 
verified in further studies, suggest that DCE-MRI can be used clinically to accurately quantify tissue microvascu-
lature. That is, it may become possible to associate MR’s macrovascular dynamic biomarkers with microvascular 
architectural features beyond their current spatial resolution limit. Interestingly, MR’s semi-quantitative metrics 
were comparable (or better) to fully quantitative metrics in quantifying the microvasculature (Table 2). This 
finding is potentially of great interest since semi-quantitative metrics may be more robust, and reproducible 
than fully quantitative metrics40,41.

The highest correlation identified in our study was TTP with svOCT microvascular metrics VVF and DNV 
( r = −0.81 and 0.83 respectively, P < 0.0001 for both) (Fig. 5C and D). To better understand this relationship, 
we substituted Eq. (5) into Eq. (4). Setting the time derivative of the resulting expression to zero to find the TTP, 
in the limit where b1 · TTP ≫ 1 (expected to generally be the case since the initial decay rate b1 is typically on 
the order of ten minutes−1, including in human patients42,43), TTP is approximated by:

In both the flow- and permeability-limited regimes of tracer transport, ktrans  and hence, kep , is proportional 
to VVF30. In combination with Eq. (7), TTP may thus be a sensitive surrogate for svOCT parameters. Although 
TTP also depends on the long-time clearance rate b2 of tracer from the blood (Eq. (9)), this quantity should be 
much easier to determine in a patient-specific manner than the full AIF, since it can be extracted from the por-
tion of the AIF where Gadolinium concentration is low and hence, less susceptible to AIF quantification errors 
stemming from bolus dispersion effects44. The TTP is also not sensitive to our choice of bi-exponential AIF form 
since in the expected limit where the fast clearance dynamics (e.g., b1 ) are much faster than 1/TTP, TTP is only 
sensitive to the long-time clearance dynamics, well-described by a single exponential term.

These findings plus the high correlation between VVF and mean DNV ( DNV ) (Fig. S1 and Eq. (7)) suggest 
that DCE-MRI using small molecular-weight tracers, such as Gadovist, may not be sensitive to properties of the 
DNV histogram (intra-voxel distribution of DNV values) that may be most relevant for hypoxia and vascular 
transport efficiency32–34. A hallmark of irregular tumor vasculature is the presence of aperfused regions, giving 
rise to a long tail in the DNV histogram at high DNV values34,45. This is important for agents such as oxygen 
and large molecular-weight chemotherapy agents, for which transport is diffusion-limited, characterized by 
equilibration times (e.g., TTP) that scale as the square of the DNV: DNV2/D, where D is the agent diffusivity34. In 
moving from micron (OCT) to mm (MRI voxel) scales, this square dependence enhances the contribution of the 
aperfused regions (large DNV) in the voxel average. Conversely, the mean DNV ( DNV ) value is less sensitive to 
the presence of these regions. This is reflected in Eq. (7): for an array of capillary “rods” with zero tortuosity, one 
can show that VVF ∝ DNV

−1/2 . The deviation of the measured exponent from 1/2 thus reflects the tortuosity of 
the vascular array but is otherwise insensitive to the DNV histogram. We speculate that higher molecular-weight 
and liposomal MRI contrast agents46, with slower diffusivity, will exhibit transport properties more sensitive to 
the DNV histogram and hence may be better suited to bridging the macro to micro resolution gap between the 
full suite of svOCT microvascular pathology metrics and clinical imaging modalities.

Previous studies have validated DCE-MRI parameter maps by directly comparing MRI measurements of tis-
sue vascularity with histological measurements of the vascular density, a 2D ex-vivo analogue of our in-vivo 3D 
VVF metric20–24. These studies are limited by their 2-dimensional analysis of vascular density using histological 
preparations which are also subject to uncertainty related to the number and location of histological sections 
taken from the tumor. Others report confocal microscopy images of the tumor vasculature to compare with 
DCE-MRI parameter maps13,14 but these are also limited by their 2-dimensional analysis of the vasculature. 
Our advanced svOCT imaging platform allows for high resolution 3D images of microvasculature in-vivo. 
This provides a more accurate assessment of the VVF and DNV . Future work will derive additional potentially 
useful microvascular metrics from our 3D svOCT datasets such as tortuosity and fractal dimension for direct 
correlation with MRI3,47. Our ability to co-register these 3D svOCT vascular images with DCE-MRI datasets 
in-vivo in the same animals adds an “extra level of realism” to these studies. The spatial correlations that we have 

(8)WIR =
ME

TTP

(9)TTP ≈
ln
(

kep/b2
)

kep − b2
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performed are important for demonstrating the ability of DCE-MRI to differentiate between regions in the same 
tumor that have different vascular microstructures. This may prove useful in several clinical scenarios including 
radiotherapy applications where conformal doses can be created to selectively boost or avoid specific regions of 
the tumor (i.e. dose painting)48. For example, conformal radiotherapy plans may be created using these spatial 
DCE-MRI parameter maps to selectively avoid poorly vascularized tumor regions (i.e. regions with a large DNV 
or small VVF), to allow for revascularization and reoxygenation of those tumor cells while still treating regions 
of the tumor that are well vascularized.

Multiple sliding window VOI sizes were investigated to perform OCT-MRI correlations. The smallest VOI 
corresponded to the size of MRI voxels in the window chamber plane ( 0.5× 0.5× 1mm3 ). A 1mm3 VOI (results 
presented) and a 1.5× 1.5× 1mm3 VOI were also used (see supplementary information Table S3 and Table S4 
respectively). There was a general improvement in the intermodality correlations with increasing VOI size. This 
can likely be attributed to slight 3D mis-registration between the svOCT and DCE-MRI datasets which may 
cause larger artefacts as VOI size decreases.

An important variable and a potential source of error in this study was the definition of the tumor margin in 
the svOCT datasets. The tumor contour has some variability as it was drawn manually based on the structural 
OCT scans and the co-registered DsRed fluorescence datasets (which highlights the viable tumor cell compart-
ment). This made it challenging to define the tumor boundary below the surface of the tissue, especially in situ-
ations where there was exudate buildup in the window chamber. To reduce this uncertainty, future work will 
implement a 3D tumor segmentation algorithm we are currently refining that is more objective (based solely on 
texture analysis of the structural OCT scans)49.

In conclusion, we have performed in vivo 3D microvascular imaging using high resolution svOCT and 
comparably lower resolution DCE-MRI via dual-modality-compatible window chamber mouse xenograft tumor 
model. Our goal was to use the detailed volumetric visualization afforded by svOCT to increase the information 
content derivable from clinically measurable DCE-MRI metrics, towards understanding / optimizing / guiding 
feedback-driven adaptive vascular targeting therapies. We thus performed co-registered spatial correlation analy-
sis between svOCT microvascular descriptors (VVF and DNV ) and DCE-MRI’s semi- and fully- quantitative 
macrovascular metrics. Various macro-to-micro vascular linkages were identified between the two modalities, 
and their respective degrees of correlation were quantified. For example, the noted high correlation between 
svOCT’s DNV and VVF with MR’s TTP metric and moderate to low correlation with ktrans and AUC metrics 
makes sense biologically and adds previously unattainable important information content to the MR vascular 
quantification toolbox. Overall, the presented methodology for bridging the macro-to-micro resolution gap in 
angiography may prove useful for tissue functional assessment and therapeutic response monitoring towards 
treatment optimization and personalization.

Data availability
The datasets generated and analysed during this study are available from the corresponding author upon rea-
sonable request.
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